Kadek David Kurniawan
Telkom Universtiy

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Mobile Assistant Application for Street Food Consumers in Bandung Julius Angger Satrio Wicaksono; Kadek David Kurniawan; Alfian Akbar Gozali
Indonesian Journal of Data Science, IoT, Machine Learning and Informatics Vol 4 No 2 (2024): August
Publisher : Research Group of Data Engineering, Faculty of Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/dinda.v4i2.1470

Abstract

In the dynamic city of Bandung, the lively street food scene has captured the fascination of tourists, offering a diverse selection of tempting dishes. Nevertheless, a persistent challenge arises from the lack of comprehensive details about these street foods, presenting a hurdle for consumers in making well-informed and health-conscious choices. This predicament underscores the necessity for a solution, leading to the introduction of the Mobile Assistant Application for Street Food Consumers in Bandung. Harnessing cutting-edge computer vision technology, this application seeks to provide a solution by furnishing users with an intuitive and effective tool for accessing in-depth information regarding street foods. The outcomes of thorough experimentation highlight the application's success in precisely identifying a wide array of street foods in Bandung. Users benefit from accurate information on ingredients and nutritional values, empowering them to make informed dietary decisions and elevating the overall street food experience in Bandung. This inventive solution not only addresses the prevailing information gap but also contributes to the well-being of consumers, ushering in a healthier and more enlightened food culture in Bandung at the tip of one's finger.