This Author published in this journals
All Journal BIMASTER
Indriani, Maria Meilinda
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

PENERAPAN PRINCIPAL COMPONENT ANALYSIS-SUPPORT VECTOR MACHINE PADA KLASIFIKASI STATUS STUNTING DI KALIMANTAN BARAT Indriani, Maria Meilinda; Martha, Shantika; Perdana, Hendra
BIMASTER : Buletin Ilmiah Matematika, Statistika dan Terapannya Vol 14, No 1 (2025): Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya
Publisher : FMIPA Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/bbimst.v14i1.91649

Abstract

Stunting merupakan permasalahan kesehatan masyarakat yang serius, ditandai dengan gangguan pertumbuhan anak akibat kekurangan gizi yang berlangsung dalam jangka waktu lama. Keadaan ini tidak hanya berdampak pada tinggi badan anak yang berada di bawah standar, tetapi juga berpengaruh terhadap perkembangan kognitif, kemampuan belajar, serta tingkat produktivitas di masa mendatang. Kalimantan Barat menjadi salah satu provinsi di Indonesia dengan prevalensi stunting yang relatif tinggi. Penelitian ini bertujuan untuk mengklasifikasikan status stunting di 14 kabupaten/kota di Kalimantan Barat dengan menerapkan metode Principal Component Analysis-Support Vector Machine (PCA-SVM). Selain itu, penelitian ini juga mengevaluasi tingkat akurasi model klasifikasi yang dihasilkan. PCA digunakan untuk mereduksi dimensi data dan mengatasi multikolinearitas, menghasilkan komponen utama yang independen sebagai variabel input dalam model. Selanjutnya, SVM dengan kernel Radial Basis Function (RBF) diterapkan untuk membangun model klasifikasi yang optimal. Penelitian ini menggunakan 14 variabel yang mencerminkan aspek kesehatan anak, ibu, lingkungan, dan faktor sosial-ekonomi. Keempat belas kabupaten/kota tersebut dikategorikan ke dalam tiga kelompok status stunting, yaitu rendah, sedang, dan tinggi. Kinerja model dievaluasi berdasarkan tingkat akurasi. Hasil penelitian menunjukkan bahwa pendekatan PCA-SVM dengan kernel RBF berhasil mencapai akurasi sebesar 92,86% dalam mengklasifikasikan status stunting. Analisis ini memberikan pemahaman yang penting mengenai pengelompokan status stunting di setiap wilayah, sehingga dapat menjadi dasar untuk merancang kebijakan intervensi yang lebih terarah dan tepat sasaran. Dengan demikian, hasil penelitian ini diharapkan dapat membantu pemerintah daerah dalam menurunkan prevalensi stunting secara efektif dan berkelanjutan.