Claim Missing Document
Check
Articles

Found 1 Documents
Search

AN ENHANCED SQL INJECTION DETECTION USING ENSEMBLE METHOD Purbawa, Doni Putra; Ulhaq, Azzam Jihad; Ikhsan, Gusna; Shiddiqi, Ary Mazharuddin
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 21, No. 1, January 2023
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v21i1.a1060

Abstract

SQL injection is a cybercrime that attacks websites. This issue is still a challenging issue in the realm of security that must be resolved. These attacks are very costly financially, which count millions of dollars each year. Due to large data leaks, the losses also impact the world economy, which averages nearly $50 per year, and most of them are caused by SQL injection. In a study of 300,000 attacks worldwide in any given month, 24.6% were SQL injection. Therefore, implementing a strategy to protect against web application attacks is essential and not easy because we have to protect user privacy and enterprise data. This study proposes an enhanced SQL injection detection using the voting classifier method based on several machine learning algorithms. The proposed classifier could achieve the highest accuracy from this research in 97.07%.