Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

Comparative Analysis of Human Detection using Depth Data and RGB Data with Kalman Filter: A Study on Haar and LBP Methods Aulia, Fira; Oktavianto, Hary; Dewantara, Bima Sena Bayu
JOIV : International Journal on Informatics Visualization Vol 9, No 3 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.3.2739

Abstract

Accurate human detection in video streams with occlusions, illumination variances, and varying distances is crucial for various applications, including surveillance, human-computer interaction, and robotics. This study investigates the performance of two widely used object detection features, Haar-like and Local Binary Pattern (LBP), for detecting human upper bodies in color and depth images. The algorithms are combined with Adaptive Boosting Cascade classifiers to leverage the discriminative power of Haar-like features and LBP texture features. Extensive experiments were conducted on a dataset comprising color images and depth data captured from a Kinect camera to evaluate the algorithms' performance in terms of precision, recall, accuracy, F1-score, and computational efficiency measured in frames per second (fps). The results indicate that when tested on color images, the Haar-Cascade method outperforms LBP-Cascade, achieving higher precision (27.4% vs. 7.8%), recall (49.2% vs. 7.8%), accuracy (21.4% vs. 4.1%), and F1-score (35.2% vs. 7.8%), while maintaining a comparable computational speed (19.07 fps vs. 19.26 fps). However, when applied to depth data, the Haar-Cascade method, coupled with Kalman filtering, demonstrates significantly improved performance, achieving precision (79.3%), recall (79.3%), accuracy (65.8%), and F1-score (79.3%) above 70%, with a computational time of approximately 19.07 fps. The integration of Kalman filtering enhances the robustness and tracking capabilities of the system, making it a promising approach for real-world applications in human detection and monitoring. The findings suggest that depth information provides valuable cues for accurate human detection, enabling the Haar-Cascade algorithm to overcome challenges faced in color image analysis. 
Distributed Aerial Image Stitching on Multiple Processors using Message Passing Interface Ramadhan, Alif Wicaksana; Aulia, Fira; Dewi, Ni Made Lintang Asvini; Winarno, Idris; Sukaridhoto, Sritrusta
JOIV : International Journal on Informatics Visualization Vol 8, No 1 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.1.1890

Abstract

This study investigates the potential of using Message Passing Interface (MPI) parallelization to enhance the speed of the image stitching process. The image stitching process involves combining multiple images to create a seamless panoramic view. This research explores the potential benefits of segmenting photos into distributed tasks among several identical processor nodes to expedite the stitching process. However, it is crucial to consider that increasing the number of nodes may introduce a trade-off between the speed and quality of the stitching process. The initial experiments were conducted without MPI, resulting in a stitching time of 1506.63 seconds. Subsequently, the researchers employed MPI parallelization on two computer nodes, which reduced the stitching time to 624 seconds. Further improvement was observed when four computer nodes were used, resulting in a stitching time of 346.8 seconds. These findings highlight the potential benefits of MPI parallelization for image stitching tasks. The reduced stitching time achieved through parallelization demonstrates the ability to accelerate the overall stitching process. However, it is essential to carefully consider the trade-off between speed and quality when determining the optimal number of nodes to employ. By effectively distributing the workload across multiple nodes, researchers and practitioners can take advantage of the parallel processing capabilities offered by MPI to expedite image stitching tasks. Future studies could explore additional optimization techniques and evaluate the impact on speed and quality to achieve an optimal balance in real-world applications.