Claim Missing Document
Check
Articles

Found 1 Documents
Search

Analisis Sentiment Publik Mengenai Neuralink dari Twitter dengan Menerapkan Naïve Bayes: Multinomial, Gaussian, dan Complement Azwan Triyadi; Purnawansyah; Darwis, Herdianti
The Indonesian Journal of Computer Science Vol. 13 No. 5 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i5.4278

Abstract

Elon Musk owns the business Neuralink, which attempts to build brain-machine interfaces. This study categorizes public opinion towards the use of Neuralink goods, including whether people agree (positive), disagree (negative), or feel neither way. Without accessing the Twitter API, the Twint Python Libraries were utilised to retrieve a dataset of 3000 using the keyword “neuralink”. What datasets are included in positive, neutral, or negative categories are designated using RoBERTa. Term Frequency Inverse Document Frequency (TF-IDF) is utilized for feature extraction, while Synthetic Minority Over-sampling Technique (SMOTE) is employed to handle class imbalance. Complement Naive Bayes, achieved accuracy of 81%, followed by Multinomial Naive Bayes, which achieved accuracy of 80%, and Gaussian Naive Bayes, which achieved accuracy of 75%. The model Complement Naïve Bayes was used in this study to attain the maximum accuracy, and accuracy increases when employing SMOTE compared to other Naïve bayes variants.