Claim Missing Document
Check
Articles

Found 13 Documents
Search

Klasifikasi Penyakit Tanaman Bawang Merah Menggunakan Convolutional Neural Network dan K-Nearest Neighbor Fifi Febrianti Usman; Purnawansyah; Herdianti Darwis; Erick Irawadi Alwi
Computer Science Research and Its Development Journal Vol. 15 No. 3 (2023): October 2023
Publisher : LPPM Universitas Potensi Utama

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The potential for yield loss due to shallot plant disease is the main trigger that can reduce agricultural productivity. Pest and disease attacks can be minimized and overcome quickly if farmers are able to classify the types of diseases that attack plants based on the characteristics and symptoms that appear. This study aims to classify shallot plant diseases, namely purple spotting and moles with a total of 320 datasets using Hue Saturation Value color feature extraction using the K-Nearest Neighbor (Euclidean Distance) and Convolutional Neural Network methods. Based on the results of the study, the accuracy, f1-score was 94% and precision, recal was 97%, 91% in purple spot disease while in moler disease it was 94% in accuracy, precision, recall, and f1-score in HSV and KNN classifications. Classification using HSV and CNN yielded high scores in accuracy, precision, recall, and f1-score with a value of 100% in both purple spot and moler shallot leaf diseases. Classification using deep learning CNN obtains very good accuracy, precision, recall and f1-score, namely 100%. With this description, the classification of shallot plant diseases using HSV and CNN, and CNN deep learning are stated to be able to classify shallot plant diseases, namely purple spotting and moles effectively and accurately.
Klasifikasi Citra Digital Daun Herbal Menggunakan Support Vector Machine dan Convolutional Neural Network dengan Fitur Fourier Descriptor Aulia Rezky Rahmadani Darmawati; Purnawansyah; Herdianti Darwis; Lutfi Budi Ilmawan
Computer Science Research and Its Development Journal Vol. 16 No. 1 (2024): February 2024
Publisher : LPPM Universitas Potensi Utama

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Leaves are one component of plants that contain natural properties and are useful for maintaining human health. However, several types of leaves have the same characteristics and characteristics that make it difficult to distinguish. This study aims to classify types of herbal leaves using the SVM method with four kernels (Linear, RBF, Polynomial, Sigmoid) and CNN with Fourier descriptor (FD) feature extraction. The processed dataset is katuk leaf images, and Moringa leaf images of 480 images which are divided into 80% training data and 20% testing data using two scenarios, namely dark and light. From the testing process, it was found that FD + CNN in the light and dark scenarios obtained an accuracy value of 98%. Thus, the FD + SVM algorithm with Linear, RBF, polynomial kernels can be recommended in classifying herbal leaf images to have the best accuracy value of 100%.
Analisis sentimen terhadap Body Shaming pada Twitter menggunakan Metode Naïve Bayes Classifier Fattah, St. Fajriah; Purnawansyah
Indonesian Journal of Data and Science Vol. 3 No. 2 (2022): Indonesian Journal of Data and Science
Publisher : yocto brain

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56705/ijodas.v3i2.46

Abstract

Salah satu bentuk media sosial yang sedang populer saat ini adalah twitter. Namun tidak jarang pengguna twitter memberikan komentar yang cenderung menyinggung pengguna twitter lain dengan kalimat negatif. Salah satu bentuk komentar negatif yang sering dilontarkan pengguna twitter adalah tentang body shaming. Body shaming merupakan komentar negatif terhadap fisik seseorang seperti gendut, pesek, cungkring dan lain-lain. Berdasarkan perilaku body shaming pada twitter, maka pada penelitian ini akan dilakukan analisis sentimen menggunakan metode Naive Bayes Classifier. Tujuan dari penelitian adalah mengukur performa accuracy, precision, recall, dan f-measure pada metode Naïve Bayes Classifier dalam analisis sentimen terhadap body shaming pada Twitter. Dataset tersebut digunakan untuk mengklasifikasikan tweets yang bersifat positif dan negatif. Teknik klasifikasi yang digunakan yaitu dengan mengukur performa dari accuracy, precision, recall, dan f-measure menggunakan metode naïve bayes classifier. Berdasarkan hasil pengujian performansi accuracy, precision, recall, dan f-measure dengan feature model trigram menggunakan metode naïve bayes classifier dilakukan pada dataset tweets body shaming yang berjumlah 908 data. Berdasarkan hasil pengujian performa dengan model trigram didapatkan hasil accuracy 61%, precision 56%, recall 55% dan f-measure 55%.
Brand Promotion Fakultas Ilmu Komputer Universitas Muslim Indonesia Andi Muhammad Naufal; Purnawansyah
Indonesian Journal of Data and Science Vol. 2 No. 2 (2021): Indonesian Journal of Data and Science
Publisher : yocto brain

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56705/ijodas.v2i2.50

Abstract

Brand adalah persepsi yang muncul pada audience mengenai sebuah perusahaan, figur ataupun ide (Hananto, 2019). Brand Identity adalah seperangkat asosiasi unik yang dimiliki oleh brand yang harus dibentuk dan dipelihara. Asosiasi ini merepresentasikan apa yang diwakili oleh brand dan mengimplikasikan janji kepada pelanggan dari organisasi (Fauziyah, 2016). Identitas merek (brand identity) dibutuhkan dalam membangun loyalitas yang nantinya akan memiliki nilai tersendiri yang mampu menjadi opini konsumen, yang bertujuan agar dapat lebih efektif dan berinteraksi sehingga membentuk persepsi dalam benak konsumen, dan menjadi dasar dari strategi promosi selanjutnya. Pemanfaatan brand identity diharapkan langkah optimasi media digital yang dikelola dengan baik serta dapat memberikan kualitas, Fakultas Ilmu Komputer (FIKOM UMI) diharapkan mampu memenuhi harapan konsumen agar memiliki reputasi yang baik, maka dari itu konsumen akan memiliki kepercayaan, menyukai, serta menganggap FIKOM UMI sebagai simbol representasi dari peradaban teknologi. Brand Identity merupakan bagian utama dari brand promotion. Penelitian ini bertujuan untuk merancang dan membangun brand identity untuk kebutuhan brand promotion sesuai dengan visi misi dan karakteristik dari FIKOM UMI. Hasil dari penelitian ini adalah sebuah media promosi yang terdiri dari media utama dan media pendukung. Media utama berupa logo dan aturan standarisasi penggunaan logo atau Graphic Standard Manual (GSM) Book, dan media pendukung seperti stationary kit, poster, banner, paper bag, billboard, backdrop, baju, dan media sosial.
Analisis Sentiment Publik Mengenai Neuralink dari Twitter dengan Menerapkan Naïve Bayes: Multinomial, Gaussian, dan Complement Azwan Triyadi; Purnawansyah; Darwis, Herdianti
The Indonesian Journal of Computer Science Vol. 13 No. 5 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i5.4278

Abstract

Elon Musk owns the business Neuralink, which attempts to build brain-machine interfaces. This study categorizes public opinion towards the use of Neuralink goods, including whether people agree (positive), disagree (negative), or feel neither way. Without accessing the Twitter API, the Twint Python Libraries were utilised to retrieve a dataset of 3000 using the keyword “neuralink”. What datasets are included in positive, neutral, or negative categories are designated using RoBERTa. Term Frequency Inverse Document Frequency (TF-IDF) is utilized for feature extraction, while Synthetic Minority Over-sampling Technique (SMOTE) is employed to handle class imbalance. Complement Naive Bayes, achieved accuracy of 81%, followed by Multinomial Naive Bayes, which achieved accuracy of 80%, and Gaussian Naive Bayes, which achieved accuracy of 75%. The model Complement Naïve Bayes was used in this study to attain the maximum accuracy, and accuracy increases when employing SMOTE compared to other Naïve bayes variants.
Studi Perbandingan Kombinasi GMI, HSV, KNN, dan CNN pada Klasifikasi Daun Herbal Alfitriana Riska; Purnawansyah; Darwis, Herdianti; Astuti, Wistiani
The Indonesian Journal of Computer Science Vol. 12 No. 3 (2023): The Indonesian Journal of Computer Science
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i3.3210

Abstract

Tumbuhan herbal memiliki banyak variasi yang dapat dikenali melalui ciri uniknya secara visual. Namun, cara ini sulit diterapkan pada tumbuhan yang memiliki ciri hampir sama. Penelitian ini membandingkan kinerja metode K-Nearest Neighbour (KNN) dan Convolutional Neural Network (CNN) dalam klasifikasi fitur daun herbal yang diekstraksi dengan menggunakan Geometric Moment Invariant (GMI) dan Hue Saturation Value (HSV). Dataset yang digunakan adalah dataset citra daun katuk (Sauropus androgynus) dan daun kelor (Moringa oleifera) dengan skenario citra terang dan citra gelap. Pembagian data untuk tiap skenario adalah 80% untuk training dan 20% untuk testing. Metode KNN diuji menggunakan nilai dan evaluasi kinerja KNN dan CNN meliputi accuracy, precision, recall, dan f1-score. Hasil penelitian menunjukkan bahwa CNN tanpa ekstraksi fitur dan CNN dengan kombinasi ekstraksi fitur HSV memperoleh performa terbaik dengan rata-rata nilai precision, recall, f1-score dan accuracy sebesar 98% untuk skenario gelap maupun terang.
Klasifikasi Penyakit Bawang Merah Menggunakan Naive Bayes dan CNN dengan Fitur GLCM Arfah, Jumrayanti; Purnawansyah; Darwis, Herdianti; Sastra, Ramdan
The Indonesian Journal of Computer Science Vol. 12 No. 3 (2023): The Indonesian Journal of Computer Science
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i3.3236

Abstract

Tanaman bawang merah merupakan salah satu tanaman penting dalam industri pertanian. Penyakit pada tanaman bawang merah dapat mengakibatkan kerugian yang signifikan bagi petani dan produsen. Penelitian ini bertujuan untuk mengklasifikasikan penyakit bawang merah pada daun bawang merah yang disebabkan oleh bercak ungu dan moler. Pengumpulan data citra bawang merah dilakukan secara langsung yang dilanjutkan dengan tahap pre-processing sebelum pengklasifikasian penyakit pada tanaman bawang merah. Algoritma Naive Bayes dan CNN dengan ekstraksi fitur GLCM digunakan dalam penelitian ini untuk melakukan perbandingan klasifikasi antara dua metode tersebut dalam mengklasifikasikan penyakit tanaman bawang merah yaitu bercak ungu dan moler. Hasil pengujian dengan menggunakan citra sebanyak 160 penyakit moler dan 160 penyakit bercak ungu menunjukkan bahwa kedua algoritma klasifikasi Naive Bayes dan CNN dengan ekstraksi fitur GLCM mampu mengklasifikasikan penyakit moler dan penyakit bercak ungu pada daun bawang merah dengan akurasi yang baik sebesar 100%. Onion plants are one of the important crops in the agricultural industry. Diseases in onion plants can result in significant losses for farmers and producers. This research aims to classify onion diseases on onion leaves caused by priole blotch and molāris. The of onion image data colaction was performed directly, followed by a pre-processing stage before classifying diseases in onion plants. The Naive Bayes algorithm and CNN with GLCM feature extraction are used in this study to compare the classification between the two methods in classifying onion diseases. The test results using a total of 160 priole blotch and 160 molāris diseases show that both the Naive Bayes and CNN classification algorithms with GLCM feature extraction are capable of classifying priole blotch and molāris diseases on onion leaves with a perfect accuracy of 100%.
Klasifikasi Penyakit Bawang Merah Menggunakan Naïve Bayes dan Convolutional Neural Network Dian; Purnawansyah; Darwis, Herdianti; Nurhayati, Lilis
The Indonesian Journal of Computer Science Vol. 12 No. 4 (2023): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i4.3265

Abstract

Bawang merah rentan terhadap serangan penyakit yang dapat mengganggu pertumbuhan dan mengakibatkan hasil panen yang tidak maksimal bahkan gagal panen, seperti bercak ungu dan moler. Penelitian ini bertujuan untuk mengklasifikasikan penyakit bawang merah dengan mengimplementasikan meetode naïve bayes (gaussian , bernoulli, dan multinomial) dan CNN pada citra bawang merah yang diekstraksi menggunakan fourier descriptor. Metode FD – CNN memperoleh tingkat accuracy 98% dalam mengklasifikasikan penyakut bawang merah, moler dan bercak ungu, sedangkan metode CNN tanpa menggunakan ekstraksi menghasilkan nilai accuracy sebesar 97%. Adapun pada metode naïve bayes, pengklasifikasian yang memiliki accuracy paling tinggi adalah metode gaussian naïve bayes sebesar 95% sedangkan yang paling rendah yaitu metode bernoulli naïve bayes dengan tingkat accuracy sebesar 42%. Dengan demikian, dapat disimpulkan bahwa CNN, FD-CNN, dan FD-GNB efektif untuk meningkatkan performa klasifikasi pada citra daun bawang merah.
Klasifikasi Daun Herbal Menggunakan Metode CNN dan Naïve Bayes dengan Fitur GLCM Adela Regita Azzahra; Purnawansyah; Darwis, Herdianti; Widyawati, Dewi
The Indonesian Journal of Computer Science Vol. 12 No. 4 (2023): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i4.3362

Abstract

Tanaman herbal menunjukkan variasi berbagai ukuran dan bentuk yang berbeda untuk setiap jenis. Penelitian ini bertujuan untuk mengklasifikasikan citra daun dari daun katuk (Sauropus Androgynus) dan daun kelor (Moringa). Dalam penelitian ini digunakan Gray Level Co-Occurrence Matrix (GLCM) untuk mengektraksi fitur contrast, correlation, homogeneity, dissimilarity, dan Angular Second Moment (ASM). Adapun pada klasifikasi diterapkan metode Convolutional Neural Network (CNN) dan Naïve Bayes dengan kernel Gaussian, multinomial, dan Bernoulli. Jumlah citra yang digunakan dalam riset ini adalah 480 citra, dengan perincian 80% untuk data training dan 20% sebagai data testing. Berdasarkan hasil pengujian dan perbandingan yang telah dilakukan didapatkan kesimpulan bahwa penerapan metode CNN tanpa ekstraksi fitur terbukti lebih efisien dalam proses klasifikasi citra daun herbal, dengan nilai precision, recall, f1-score dan accuracy mencapai 98% pada situasi cahaya terang.
Klasifikasi Penyakit Tanaman Bawang Merah Menggunakan Convolutional Neural Network dan K-Nearest Neighbor Usman, Fifi Febrianti; Purnawansyah; Herdianti Darwis; Erick Irawadi Alwi
CSRID (Computer Science Research and Its Development Journal) Vol. 15 No. 3 (2023): October 2023
Publisher : LPPM Universitas Potensi Utama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22303/csrid-.15.3.2023.177-188

Abstract

The potential for yield loss due to shallot plant disease is the main trigger that can reduce agricultural productivity. Pest and disease attacks can be minimized and overcome quickly if farmers are able to classify the types of diseases that attack plants based on the characteristics and symptoms that appear. This study aims to classify shallot plant diseases, namely purple spotting and moles with a total of 320 datasets using Hue Saturation Value color feature extraction using the K-Nearest Neighbor (Euclidean Distance) and Convolutional Neural Network methods. Based on the results of the study, the accuracy, f1-score was 94% and precision, recal was 97%, 91% in purple spot disease while in moler disease it was 94% in accuracy, precision, recall, and f1-score in HSV and KNN classifications. Classification using HSV and CNN yielded high scores in accuracy, precision, recall, and f1-score with a value of 100% in both purple spot and moler shallot leaf diseases. Classification using deep learning CNN obtains very good accuracy, precision, recall and f1-score, namely 100%. With this description, the classification of shallot plant diseases using HSV and CNN, and CNN deep learning are stated to be able to classify shallot plant diseases, namely purple spotting and moles effectively and accurately.