Claim Missing Document
Check
Articles

Found 2 Documents
Search

A Blending Ensemble Approach to Predicting Student Dropout in Massive Open Online Courses (MOOCs) Putra, Muhammad Ricky Perdana; Utami, Ema
JUITA: Jurnal Informatika JUITA Vol. 13 Issue 1, March 2025
Publisher : Department of Informatics Engineering, Universitas Muhammadiyah Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30595/juita.v13i1.24061

Abstract

The problem faced in the implementation of Massive Open Online Course (MOOC) is the high dropout rate (DO) reaching 90% which exceeds the formal school dropout rate. Preventive action needs to be taken to minimize the impact on MOOCs, instructors, and students. One solution is to do machine learning (ML) based prediction. The use of ML does not escape the problem of prediction performance that is still less accurate so it needs to be improved by blending ensemble learning (BEL). This research builds a BEL model consisting of two layers including base model with KNN, Decision Tree, and Naïve Bayes algorithms, then meta model with XGBoost. The dataset from KDD Cup 2015 contains clickstream from XuetangX website. The pre-processing stage includes selecting the course with the most participants, normalization, SMOTE, feature selection, and breaking it into three: ensemble, blender, and test data. The BEL model evaluation results obtained an accuracy value of 90.16%, precision of 85.64%, recall of 97.31%, F1-Score of 91.10%, and AUC of 92.83%.
Optimasi Prediksi Kelayakan Pinjaman dengan Teknik Resampling dan Algoritma Boosting Putra, Muhammad Ricky Perdana; Juwariyah, Siti; Ridwan, Muhammad; Marco, Robert
Komputika : Jurnal Sistem Komputer Vol. 14 No. 2 (2025): Komputika: Jurnal Sistem Komputer
Publisher : Computer Engineering Departement, Universitas Komputer Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34010/komputika.v14i2.15485

Abstract

Loan eligibility assessment is a crucial element in financial risk mitigation, aiming to minimize potential losses due to bad debts and ensure proper resource distribution. Traditional rule-based approaches have limitations in scalability, risk of subjective bias, and complex data management. The application of Machine Learning (ML) presents a solution with the ability to analyze complex patterns in historical data, although significant challenges such as class imbalance where the number of defaulted borrowers is much smaller than that of current borrowers and missing values ​​in the dataset remain major obstacles. This study evaluates the SMOTE and SMOTE-ENN resampling methods, to address class imbalance, as well as the mean imputation technique to handle missing values. By evaluating boosting algorithms, including Gradient Boosting, XGBoost, LightGBM, AdaBoost, and CatBoost, the results show that the combination of the CatBoost algorithm with the SMOTE-ENN sampling technique provides the highest prediction accuracy of 91.67%. This finding confirms the significant potential of ML in improving the accuracy, efficiency, and fairness of predictions, while making important contributions to the development of data-driven decision-making systems in the financial sector.