Claim Missing Document
Check
Articles

Found 2 Documents
Search

DEVELOPMENT OF CLUSTER INTEGRATION WITH VARIAN BASED STRUCTURAL EQUATION MODELING TO MANAGE HETEROGENEOUS DATA Sepriadi, Hanifa; Iriany, Atiek; Solimun, Solimun; Rinaldo Fernandes, Adji Achmad
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 2 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss2pp1193-1202

Abstract

In the application of SEM to multivariate data, the individuals collected not only come from the same population but also from several groups (clusters). This data is heterogeneous. When SEM is applied to heterogeneous data, there will be a risk of bias in estimating equations in the measurement and structural models because there are differences between groups in the data. The purpose of this study is to overcome heterogeneous data in modeling cashless behavior with cluster using a dummy approach. This study used primary data from a survey in Bekasi City using a questionnaire with 100 respondents. Based on the study's results, it is known that using clustering in SEM can overcome heterogeneous data, which is indicated by the high coefficient of determination of 96.12%. Banks can use the results of this study to design products and services that are more in line with customer needs and preferences while encouraging financial inclusion in the digital era.
Kombinasi Analisis Bibliometrik dengan Latent Dirichlet Allocation sebagai Pemodelan Topik Cashless Society Sepriadi, Hanifa; Rudiat Sekarsari, Cindy; Iriany, Atiek; Solimun; Rinaldo Fernandes, Adji Achmad
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 12 No 2: April 2025
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2012129244

Abstract

Era digitalisasi dan komputasi telah dimulai, ditandai dengan munculnya teknologi digital yang merasuk ke berbagai aspek kehidupan, sementara data juga terus berkembang menjadi big data.  Setelah era covid 19, metode pembayaran non-tunai berkembang sangat pesat, sehingga banyak penelitian mengenai cashless society. Tujuan dari penelitian ini adalah memodelkan topik-topik yang berkaitan dengan cashless society untuk mendapatkan variabel dan indikator yang terkait dengan menggunakan analisis bibliometrik dan latent dirichlet allocation. Data penelitian ini berasal dari artikel publikasi ilmiah dan hasil web scrapping di twitter yang bertemakan cashless society. Hasil penelitian menunjukkan bahwa terdapat 5 variabel dan 21 indikator yang berhubungan dengan cashless society.   Abstract The era of digitalization and computing has begun, marked by the emergence of digital technology which permeates various aspects of life, while data also continues to develop into big data.  After the covid 19 era, non-cash payment methods developed very rapidly, so there were many studies on the cashless society. The purpose of this research is to model topics related to the cashless society to obtain related variables and indicators using bibliometric analysis and latent dirichlet allocation. This research data comes from scientific publication articles and web scrapping results on twitter with the theme of cashless society. The results showed that there are 5 variables and 21 indicators related to cashless society.