In the application of SEM to multivariate data, the individuals collected not only come from the same population but also from several groups (clusters). This data is heterogeneous. When SEM is applied to heterogeneous data, there will be a risk of bias in estimating equations in the measurement and structural models because there are differences between groups in the data. The purpose of this study is to overcome heterogeneous data in modeling cashless behavior with cluster using a dummy approach. This study used primary data from a survey in Bekasi City using a questionnaire with 100 respondents. Based on the study's results, it is known that using clustering in SEM can overcome heterogeneous data, which is indicated by the high coefficient of determination of 96.12%. Banks can use the results of this study to design products and services that are more in line with customer needs and preferences while encouraging financial inclusion in the digital era.
                        
                        
                        
                        
                            
                                Copyrights © 2025