Nugraha, Fanata Yudha
Unknown Affiliation

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Petroleum and Geothermal Technology

Implementation of CO2 Source-Sinks Match Database Development. Case Study: West Java Tony, Brian; Nugraha, Fanata Yudha; Al Hakim, Muhamad Firdaus; Putra, I Putu Raditya Ambara; Chandra, Steven
Journal of Petroleum and Geothermal Technology Vol. 5 No. 2 (2024): November
Publisher : Universitas Pembangunan Nasional "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/jpgt.v5i2.13432

Abstract

Carbon capture and storage (CCS) is widely recognized as a significant technology in mitigating carbon dioxide (CO2) emissions from major industrial facilities, such as power plants and refineries. CCS involves the capture of concentrated CO2 streams from point sources, followed by subsequent safe and secure storage in appropriate geological reservoirs. We developed spatial database system using Geographic Information System (GIS) tools to facilitate source-sink matching between CO2 emitter and CO2 storage to foster the implementation of CCS/CCUS technologies in Indonesia. In this study, we proposed workflow approach to determine the location of CO2 sinks/storage candidates given limited data available. Additionally, this method spatially characterizes and represents probable clusters where opportunities for CCS/CCUS implementation are present. We consider the existing pipeline route and Right of Ways (ROW) to minimize the potential cost related to transportation of CO2 using pipeline. The priority of available storage is classified based on the storage capacity, distance, and other technical criteria to determine the optimal location of potential CO2 injection. We applied the workflow to Coal Fired Power Plant in West Java as the CO2 source, and we obtained 6 depleted fields that are connected to the existing ROW with CO2 storage capacity of 42.03 MMT.
Synthesis of Synthetic Brine to Estimate Carbonate Scale Index in Oil Industry Nugraha, Fanata Yudha; Asmorowati, Dewi; Saputra, Ega Dimas; Astuti, Dian Indri; Tony, Brian; Waisnawa, I Putu Gema Bujangga
Journal of Petroleum and Geothermal Technology Vol. 5 No. 2 (2024): November
Publisher : Universitas Pembangunan Nasional "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/jpgt.v5i2.13636

Abstract

The decreased oil production due to scaling in production equipment results in costs. In oil wells, ions such as calcium, barium, carbonate, sulfate, magnesium, sodium, and chloride are commonly present in formation water. Excessive solubility of ions can trigger precipitation or what is often called scale. This study focuses on creating synthetic brine with a composition resembling field formation water as an alternative solution for rapid laboratory-scale measurement of the scale index. In this study focus on carbonate and bicarbonate scale. The stages of the research involves synthetic brine preparation, physical and chemical testing of the brine, comparison with formation water, and calculation of the Stability Index (SI) using Stiff & Davis method. The results indicate that synthetic brine can be prepared based on laboratory analysis of field samples by estimating the materials and masses present in formation water, thus allowing replication using natural or chemical materials in the laboratory while considering parameters such as pressure, temperature, and pH during the manufacturing process. The pH significantly impacts the risk of scale formation, where a slightly basic pH, around pH 8, supports higher concentrations of carbonate ions (CO32-) and bicarbonate ions (HCO3-), thereby increasing the risk of scale formation.