Hehanussa, Siti Gayatri
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Penerapan Metode K-Nearest Neighbor dan Support Vector Machine untuk Klasifikasi Kematangan Buah Mengkudu Hartono Wijaya, Sony; Haryanto, Toto; Hehanussa, Siti Gayatri
Jurnal Ilmu Komputer dan Agri-Informatika Vol. 12 No. 1 (2025)
Publisher : Sekolah Sains Data, Matematika, dan Informatika. Institut Pertanian Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jika.12.1.25-37

Abstract

Buah mengkudu (Morinda citrifolia) merupakan salah satu komoditas ekspor buah-buahan di Indonesia yang selalu tersedia di setiap musim dan dikenal memiliki berbagai manfaat kesehatan. Buah mengkudu berasal dari wilayah Asia Tenggara, termasuk Indonesia, dan sering digunakan dalam pengobatan tradisional. Pada umumnya masyarakat menentukan kematangan buah mengkudu secara manual, yaitu dengan menggunakan penampakan visual. Hal ini menyebabkan adanya perbedaan persepsi dalam menentukan tingkat kematangan buah mengkudu. Oleh karena itu, penelitian ini bertujuan membangun model machine learning untuk klasifikasi tingkat kematangan buah mengkudu. Metode klasifikasi yang digunakan adalah K-Nearest Neighbor (KNN) dan Support Vector Machine (SVM) dengan menggunakan ekstraksi fitur warna Hue Saturation Intensity (HSI) dan ekstraksi fitur tekstur Local Binary Pattern (LBP). Pengklasifikasian yang dilakukan pada buah mengkudu dengan algoritma KNN menghasilkan model klasifikasi yang lebih baik daripada menggunakan algoritma SVM. Akurasi terbaik yang dihasilkan oleh KNN sebesar 88.62% pada k=11, sedangkan akurasi terbaik SVM dengan kernel polynomial sebesar 87.80%, menggunakan parameter C=0.1 Gamma=1, Degree=5, dan coef0=1.0. Hasil ini didapatkan dari data latih dan data uji dengan perbandingan 80:20.