Claim Missing Document
Check
Articles

Found 2 Documents
Search

Modeling and optimization of hybrid hydro-solar-wind systems for green hydrogen production in Togo Batablinlè, Lamboni; Kongnine, Damgou Mani; Panafeïkow, Petema; Kossi, Tepe; Yendoubé, Lare; Zakaria, Djibib; Lawin, Agnidé Emmanuel; Banna, Magolmeena
International Journal of Renewable Energy Development Vol 14, No 4 (2025): July 2025
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2025.61136

Abstract

This study examines the feasibility and optimization of hybrid hydro-solar-wind-hydrogen energy systems in Togo, focusing on seasonal variations and energy management. Data on solar radiation, wind speed, and hydropower were obtained from meteorological stations, satellite databases, and the Nangbéto station. The results of this study show that the energy management system at the Nangbéto dam could rely on hydrogen storage and a 2.75 MW fuel cell to balance seasonal fluctuations, while a ±3 MW battery would stabilize power output. During periods of high hydropower production, surplus energy could be converted into hydrogen to ensure a continuous supply during low-flow months. The flow fluctuates seasonally, ranging from 1.5–20 m³/s in dry months to over 120 m³/s in the wet season, affecting hydrogen production (5–25 kg/day). Electrolysis efficiency remains stable (65–85%) due to optimized management. The hydro-solar-wind hybrid system converts up to 20% of hydropower into hydrogen, with peak production in August (~1,700 kg/month). Selected sites over Togo, particularly Blitta and Alédjo, show potential for hydrogen infrastructure, with Blitta yielding the most hydrogen (532.15 kg annually) and Lomé the least (482.72 kg) due to differences in solar irradiance. The study highlights the role of energy storage, hybrid integration, and policy support to enhance Togo’s hydrogen production and long-term energy stability.
Future wind speed and energy potential in Togo for the period 2021-2040: Projections from CORDEX-Africa models Batablinlè, Lamboni; Yessou-Gnouyarou, Kassiki; Latévi, Lawson; Lorimpo, Kpengou; Bazyomo, Serge; Esso-ehanam, Tchedre Kpéli; Zakari, M. Djibibe Moussa; Bannaa, Magolmeena; Emmanuel, Lawin Agnidé
International Journal of Renewable Energy Development Vol 15, No 1 (2026): January 2026
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2026.61680

Abstract

This study assesses the wind energy potential across Togo by analyzing historical (2001–2020) and future (2021–2040) wind regimes using MERRA-2 reanalysis data and six bias-corrected CORDEX-Africa regional climate models (MIROC, MPI, ICHEC, NOAA, NCC, and IPSL). A Python-based analytical framework was developed to automate data compilation, visualization, and multi-model statistical processing, ensuring reproducibility and computational efficiency. Model performance was evaluated against ground-based observations using a multi-metric validation approach combining R², NSE, and RMSE. Results identify MERRA-2 (R² = 0.96, NSE = 0.95, RMSE = 0.35) and the RCMs MIROC, MPI, and ICHEC (R²=0.93–0.95, NSE=0.92–0.94, RMSE<0.45) as the most reliable sources for future wind projections. Seasonal and spatial analyses reveal pronounced heterogeneity across the country. During the rainy season, wind speeds in northern Togo reach 3.8–4.3 m/s, while the southern coastal zone maintains stable year-round winds ranging from 3.9 to 4.5 m/s due to the influence of persistent sea breezes. Future projections for 2021–2040 show an increase in wind speeds of 4–8 %, corresponding to wind power density enhancements of 9–30 %. Peak power density values are projected to reach approximately 52 W/m² in the north, 47 W/m² in the center, and 49 W/m² along the coast. Overall, these findings provide a robust scientific basis for region-specific energy strategies, including the development of hybrid wind–solar systems, targeted coastal installations, and optimized siting of northern wind farms. The results further highlight the potential of wind energy to support national electrification efforts and emerging green hydrogen initiatives, contributing to sustainable development and energy security in Togo.