AbstrakProses optimasi SEO melibatkan banyak faktor yang saling terkait, sehingga sulit bagi tim SEO dalam menentukan halaman mana yang memerlukan perbaikan lebih lanjut. Penelitian ini bertujuan untuk mengembangkan model berbasis machine learning yang tidak hanya akurat dalam mengklasifikasikan halaman, tetapi juga efisien dalam memilih fitur yang paling informatif. Metode yang digunakan dalam penelitian ini melibatkan seleksi fitur menggunakan Mutual Information (MI) dan Random Forest Feature Importance (RFFI) untuk mengidentifikasi faktor-faktor yang paling penting untuk optimasi SEO, yang dimodelkan menggunakan Random Forest dan Weighted Voting Ensemble (WVE). Model dievaluasi berdasarkan Accuracy, Precision, Recall, dan ROC AUC. Hasil penelitian menunjukkan bahwa model Random Forest dengan 20 fitur berdasarkan RFFI, memberikan performa terbaik dengan ROC AUC sebesar 75.87%, Accuracy 77,74%, Precision 60,51%, dan Recall 71.29%. Model mampu membedakan secara efektif halaman yang membutuhkan optimasi SEO atau tidak.Kata kunci: Feature Importance, Random Forest, SEO, Seleksi Variabel, WVEAbstractThe SEO optimization process involves many interrelated factors, making it challenging to identify which pages need further improvement. This study proposes a machine learning-based model that is accurate in classifying web pages and efficient in selecting the most relevant features. Feature selection is performed using Mutual Information (MI) and Random Forest Feature Importance (RFFI) to identify key factors for SEO optimization, followed by modeling with Random Forest and Weighted Voting Ensemble (WVE). The model is evaluated using Accuracy, Precision, Recall, and ROC AUC. Results indicate that the Random Forest model with 20 features selected via RFFI delivers the best performance, achieving a ROC AUC of 75.87%, Accuracy of 77.74%, Precision of 60.51%, and Recall of 71.29%. The model effectively distinguishes between pages that require SEO optimization and those that do not.Keywords: Feature Importance, Random Forest, SEO, Variable Selection, WVE