Claim Missing Document
Check
Articles

Found 3 Documents
Search

Implementasi Sistem Informasi Implementasi Sistem Informasi Penelitian Dan Pengabdian Pada Fakultas Teknik Universitas Pelita Bangsa Berbasis Microservices: Information Systems, Microservices, Data Management, Research. Dwi, M. Najamuddin; Agung, Fajar; Pramudito, Dendy K.
Jurnal Pelita Teknologi Vol 19 No 2 (2024): September 2024
Publisher : Universitas Pelita Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37366/pelitatekno.v19i2.5796

Abstract

This study aims to develop and implement a microservices-based information system for managing research and community service data at Universitas Pelita Bangsa. The previous system had several shortcomings, including manual and fragmented data management, leading to data duplication, slow reporting processes, and limited access to information for lecturers. This research employed Agile Development methodology to ensure that the developed system effectively meets user needs. The results indicate that the implementation of a microservices architecture significantly improves the efficiency and effectiveness of data management, accelerates the reporting process, and facilitates easier access to information for lecturers. Additionally, the system optimizes collaboration among stakeholders by providing seamless and integrated access to research and community service data. Consequently, this microservices-based information system has proven capable of enhancing the quality of faculty services, while also offering flexibility for future system development in line with the faculty's needs and growth.
Pembuatan dan Implementasi Profil Institusi SDIT Al Fajri Cahaya Umat Berbasis Web PC dan Web Mobile Sasongko, Ananto; Pramudito, Dendy K.; Edora, Edora; Ekhsan, Muhamad; Suwandi, Suwandi
Lentera Pengabdian Vol. 1 No. 01 (2023): Januari 2023
Publisher : Lentera Ilmu Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59422/lp.v1i01.23

Abstract

Data dari Asosiasi Penyelenggara Jasa Internet Indonesia (APJII) pada tahun 2019-2020 sebesar 73,7 % dari 266 juta seluruh penduduk Indonesia. Kemajuan internet yang sangat pesat tidak hanya dimanfaatkan untuk mendapatkan informasi saja, tetapi bisa juga dimanfaatkan untuk sarana media promosi melalui pembuatan website. Hanya saja di SDIT AL FAJRI CAHAYA UMAT belum mengunakan website sebagai media presentasi profil sekolah melainkan dengan cara menyebar browser, flayer dan promosi ke masyarakat sekitar Cikarang. Akan tetapi pelaksanaan dengan cara konvensional mempunyai beberapa banyak kendala dan masalah diantaranya kurangnya komunikasi, tidak efesiensi waktu dan biaya karena harus mencetak browser dan flayer selain itu dikarenakan jangkauan promosi yang terbatas. Dalam rangka mengatasi kendala ini, salah satu solusi yaitu dengan mengimplementasikan website profile sekolah. Saat ini, website sudah menjadi kebutuhan yang mendasar sebuah institusi karena merupakan salah satu media yang efektif di zaman sekarang. Sudah banyak penelitian yang membuktikan bahwa website adalah salah satu media paling efektif mempresentasikan profil sekolah.
Using Graph Neural Networks and CatBoost for Internet Security Prediction with SMOTE Sunge, Aswan Supriyadi; Hendric, Spits Warnars Harco Leslie; Pramudito, Dendy K.
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol. 10 No. 4 (2024): December
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v10i4.30157

Abstract

Internet security is the most important issue in cyberspace, on the other hand, cybercrime occurs, and the most serious threat is the theft of personal data and its misuse for the benefit of others. Although cyberspace is while internet security cannot eliminate all risks, predictive models can significantly reduce cybercrime by identifying vulnerabilities if you know how to prevent it. One of the most important things is that many internet users do not know what measures are used to avoid and whether it is safe to visit or explore, on the other hand, in system development existing studies on internet security prediction often rely on generic models that lack precision in identifying influential features or ensuring class balance in developing internet security. In this case, Deep Learning (DL) helps learn patterns from recorded data, find relevant patterns, and use the model effectively. The purpose of this study is to identify the most influential features in internet security and evaluate the effectiveness of advanced machine learning models, such as Graph Neural Networks (GNNs) and Categorical Boosting (CatBoost), for predicting internet safety. So far other studies have tested the entire data set and used a model that is generally. This is expected to lead to the design or development of systems and programs that are useful for internet security. The study used a dataset of 11,055 records with 30 features and binary classification labels ('Safe' and 'Not Safe'). To address the class imbalance, SMOTE was applied before splitting the data into training and testing sets. In testing the Graph Neural Networks (GNNs) model achieved 93.58% accuracy, 93.63% precision, 93.58% recall, and 93.55% F1-score, demonstrating its effectiveness for internet security prediction. From the results of testing the CatBoost model was used to identify key features, revealing that the 'URL of Anchor,' 'SSLFinal State,' and 'Web Traffic' have the most significant impact. From the experiments conducted, the CatBoost effectively identified features with the highest on prediction accuracy, and the GNNs model is very accurate and precise for developing applications or systems to predict internet security.