Claim Missing Document
Check
Articles

Found 3 Documents
Search

Processing Agricultural Waste as complete feed at DZN Farm Sarjito, S; Muhtadi, M; Wijianto, W; Adiputra, Bagas; Wibowo, Ilham; Aziz, Rizky
Journal of Community Services and Engagement: Voice of Community (VOC) Vol. 3 No. 2 (2023)
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/voc.v3i2.4424

Abstract

DZN Farm is a sheep farming group located in the village of Senden RT 10/04, Ngawen, Klaten which has potential in the agricultural sector, especially in the livestock sector. There are 10 breeders with a total of 150 sheep, which have been kept since 2020. One of the potential commodities of Senden village is sheep which are kept as additional income. The DZN Farm livestock group was formed with the aim of ensuring that sheep farmers who are members of the livestock group are able to collaborate with each other, and become a dynamic and growing group. Priority problems faced by partners include: 1) Production aspects including: Quality and availability of feed, namely the decreasing availability of natural animal feed in nature and lack of knowledge of utilizing agricultural waste, Utilization of livestock waste, namely the livestock waste produced has not been utilized optimally; 2) Management and Marketing Aspects, namely Marketing is still semi-conventional, livestock marketing is done by word of mouth between communities and via social media Facebook. The solution for implementing the PKM program is 1) increasing the economic income of livestock groups through engineering complete feed and adding value to livestock waste which is processed into fertilizer. 2) entrepreneurship development which can be achieved through digital-based marketing planning via websites, social media and marketplaces. Meanwhile, the PKM Program's output target is to create an environmentally friendly livestock model to improve the economy.
Sheep Waste Processing in the DZN Farm Livestock Group Sarjito, S; Muhtadi, M; Wijianto, W; Adiputra, Bagas; Wibowo, Ilham; Aziz, Rizky
Prosiding University Research Colloquium Proceeding of The 17th University Research Colloquium 2023: Bidang Pengabdian Masyarakat
Publisher : Konsorsium Lembaga Penelitian dan Pengabdian kepada Masyarakat Perguruan Tinggi Muhammadiyah 'Aisyiyah (PTMA) Koordinator Wilayah Jawa Tengah - DIY

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Sheep livestock business that is carried out by the community has the potential as a source of income, but it is still considered a sideline because agricultural business is still the main focus. The agricultural business undertaken is still dependent on chemical fertilizers which are fairly expensive steps in Senden Village. In addition, public knowledge of the dangers of chemical fertilizers is very minimal or even practically nonexistent. Likewise, the knowledge of the utilization of Sheep waste in the form of feces or urine has not been utilized as sufficient organic fertilizer. Knowledge and pregnancy enhancement are carried out with counseling methods and training in processing Sheep waste in the form of Sheep urine. The activities carried out are the preparation stage in the form of a location survey, the distribution of questionnaires to see the initial knowledge of farmers/breeders, the provision of material or training on wastewater treatment, and the direct simulation of how to make organic liquid fertilizer. The preparation phase of tools and materials that will be needed in the process of making organic liquid fertilizer (POC). The next step is the procedure for making POC. The last stage is the harvesting of POC, packaging, and marketing of POC that has been produced. The output of this community service is the utilization of livestock waste in the form of Sheep urine as liquid organic fertilizer. Farmers and livestock enthusiastically participate in this activity so that their knowledge and understanding of integrated livestock waste management.
Analisis Sentimen Kepuasan Pengguna OYO DiPlaystore Dengan Multinoial Naive Bayes dan Chi-square Aziz, Rizky; Tresna Maulana Fahrudin; Wahyu Syaifullah Jauharis Saputra
JURNAL FASILKOM Vol. 14 No. 1 (2024): Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer)
Publisher : Unversitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/jf.v14i1.6943

Abstract

ABSTRACKOpinions play a crucial role in everyday life, significantly influencing human behavior and decisions. Especially in the context of business and organizations, consumer opinions about products and services are highly valuable. This study focuses on analyzing the sentiment of OYO application reviews on the Google Play Store, with the goal of classifying reviews as either positive or negative. OYO Hotels & Homes, a startup company in the accommodation sector originating from India, has achieved remarkable success with revenues reaching US$951 million in fiscal year 2019. The primary classification method used is Multinomial Naïve Bayes, which is an approach in supervised learning, along with Chi-Square feature selection to explore correlations between factors influencing user satisfaction. The research process includes data collection of reviews, preprocessing, labeling, and data splitting. Subsequently, TF-IDF weighting and Chi-Square feature selection are performed. The results of sentiment analysis indicate a dominance of positive reviews, reflecting user satisfaction with OYO services. The classification process uses the Multinomial Naïve Bayes algorithm, with an accuracy rate of 85.5% without feature selection, increasing to 87.00% with Chi-Square feature selection. These results demonstrate the effectiveness of the Multinomial Naïve Bayes algorithm and the importance of feature selection in sentiment analysis. Through a deeper understanding of user sentiment, companies can enhance service quality and respond to feedback more effectively, ensuring optimal customer satisfaction. This research has broad implications for sentiment analysis and the use of statistical methods to address complex issues in the technology industry. Keywords: Sentiment Analysis, OYO Application, Google Playstore, Multinomial Naïve Bayes, Chi-Square Feature Selection. Abstrak Opini memainkan peran krusial dalam kehidupan sehari-hari, memengaruhi perilaku dan keputusan manusia secara signifikan. Terutama dalam konteks bisnis dan organisasi, pendapat konsumen tentang produk dan layanan sangatlah berharga. Penelitian ini berfokus pada analisis sentimen ulasan aplikasi OYO di Google Playstore, dengan tujuan mengklasifikasikan ulasan menjadi positif atau negatif. OYO Hotels & Homes, sebuah perusahaan startup di sektor akomodasi yang berasal dari India, telah mencapai kesuksesan luar biasa dengan pendapatan mencapai US$951 juta pada tahun fiskal 2019. Metode klasifikasi utama yang digunakan adalah Multinomial Naïve Bayes, yang merupakan pendekatan dalam pembelajaran terawasi dan seleksi fitur Chi-Square untuk mengeksplorasi korelasi antara faktor-faktor yang memengaruhi kepuasan pengguna. Proses penelitian meliputi pengumpulan data ulasan, preprocessing, labeling, dan pembagian data. Selajutnya dilakukan pembobotan TF-IDF dan seleksi fitur Chi-Square. Hasil analisis sentimen memperlihatkan dominasi ulasan positif, menunjukkan kepuasan pengguna terhadap layanan OYO. Proses klasifikasi menggunakan algoritma Multinomial Naïve Bayes, dengan hasil akurasi model tanpa seleksi fitur sebesar 85.5%, meningkat menjadi 87.00% dengan seleksi fitur Chi-Square. Hasil ini menunjukkan efektivitas algoritma Multinomial Naïve Bayes dan pentingnya seleksi fitur dalam analisis sentimen. Melalui pemahaman yang lebih dalam terhadap sentimen pengguna, perusahaan dapat meningkatkan kualitas layanan dan merespons umpan balik dengan lebih baik, memastikan kepuasan pelanggan yang optimal. Penelitian ini memiliki implikasi luas dalam analisis sentimen dan penggunaan metode statistik untuk mengatasi masalah kompleks dalam industri teknologi.