p-Index From 2021 - 2026
0.444
P-Index
This Author published in this journals
All Journal J.Pelastek Sagu
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analisis Pemodelan Statistik Untuk Monitoring dan Evaluasi Kinerja Laboratorium MIPA Berbasis Pendekatan Big Data: Statistical Modeling Analysis for Monitoring and Evaluating The Performance of The MIPA Laboratory Based on A Big Data Approach Ninik Triayu Susparini; Marwita; Dita Ariyanti
JURNAL PENGELOLAAN LABORATORIUM SAINS DAN TEKNOLOGI Vol 3 No 1 (2023): Juni 2023
Publisher : Universitas Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33369/pelastek.v3i1.41900

Abstract

Penelitian ini mengkaji penerapan pemodelan statistik berbasis big data untuk monitoring dan evaluasi kinerja laboratorium MIPA. Melalui tinjauan literatur komprehensif, studi ini mengeksplorasi tren terkini dalam analitik big data, pemodelan statistik, dan sistem monitoring kinerja laboratorium. Hasil menunjukkan bahwa integrasi teknologi big data dengan pemodelan statistik canggih dapat secara signifikan meningkatkan efisiensi operasional, akurasi analisis, dan pengambilan keputusan di laboratorium MIPA. Pendekatan ini memungkinkan analisis real-time, prediksi tren, dan optimalisasi sumber daya. Namun, implementasinya menghadapi tantangan seperti keamanan data, integrasi sistem, dan kebutuhan akan keterampilan khusus. Kesimpulannya, adopsi pendekatan big data dalam pemodelan statistik membuka peluang besar untuk peningkatan kinerja laboratorium MIPA, meskipun memerlukan investasi dalam infrastruktur dan pengembangan kompetensi.
KONSENTRASI KAYU MANIS TERHADAP MUTU MANISAN EMPULUR BUAH NANAS (Ananas comosus L. Merr) SELAMA PENYIMPANAN Marwita; Efendi, Raswen; Rossi, Evy
SAGU Vol. 20 No. 2 (2021): SAGU Journal – Agri. Sci. Tech., September, 2021, Vol. 20 : No. 2
Publisher : Fakultas Pertanian Universitas Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The purpose of this research is to obtain the best concentration of cinnamon on the quality of candied pineapple pith (Ananas comosus L. Merr) during storage. This research used a Completely Randomized Design (CRD) with five treatments and three replications to obtain 15 experimental units. The treatments in this study were K1 (6% cinnamon concentration), K2 (8% cinnamon concentration), K3 (10% cinnamon concentration), K4 (12% cinnamon concentration), and K5 (14% cinnamon concentration). The data obtained were analyzed statistically using ANOVA and DNMRT test at 5% level. The results showed that the concentration of cinnamon in candied pineapple pith significantly affected the water content, total sugar content, pH, vitamin C, total plate count, overall descriptive and hedonic sensory assessment. The best treatment after 18 days of storage was K3 treatment (10% cinnamon concentration) with an average moisture content of 24.46%, total sugar content of 19.90%, acidity (pH) 4.36, vitamin C 1.08 mg/100 g, and total plate counts of 71,00 × 103 koloni/g. Overall sensory assessment favored by panelists with a description of yellowish brown color, very aromatic pineapple and cinnamon, taste of cinnamon and slightly hard texture.