Claim Missing Document
Check
Articles

Found 1 Documents
Search

Breast Cancer Classification on Ultrasound Images Using DenseNet Framework with Attention Mechanism Azka, Hanina Nafisa; Wiharto, Wiharto; Suryani, Esti
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 7 No 3 (2025): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v7i3.779

Abstract

Breast cancer is one of the most prevalent and life-threatening diseases among women worldwide. Early detection of breast cancer being critical for increasing survival rates. Ultrasound image is commonly used for breast cancer screening due to its non-invasive, safe, and cost-effective. However, ultrasound images are often of low quality and have significant noise, which can hinder the effectiveness of classification models. This study proposes an enhanced breast cancer classification model that leverages transfer learning in combination with attention mechanisms to improve diagnostic performance. The main contribution of this research is the introduction of Dense-SASE, a novel architecture that combines DenseNet-121 with two powerful attention modules: Scaled-Dot Product Attention and Squeeze-and-Excitation (SE) Block. These mechanisms are integrated to improve feature representation and allow the model to focus on the most relevant regions of the ultrasound images. The proposed method was evaluated on a publicly available breast ultrasound image dataset, with classification performed across three categories: normal, benign, and malignant. Experimental results demonstrate that the Dense-SASE model achieves an accuracy of 98.29%, a precision of 97.97%, a recall of 98.98%, and an F1-score of 98.44%. Additionally, Grad-CAM visualizations demonstrated the model's capability to localize lesion areas effectively, avoiding non-informative regions, and confirming the model's interpretability. In conclusion, the Dense-SASE model significantly improves the accuracy and reliability of breast cancer classification in ultrasound images. By effectively learning and focusing on clinically relevant features, this approach offers a promising solution for computer-aided diagnosis (CAD) systems and has the potential to assist radiologists in early and accurate breast cancer detection.