Noormaizan, Khairul Akmal
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Privacy-Preserving U-Net Variants with pseudo-labeling for radiolucent lesion segmentation in dental CBCT Ismail, Amelia Ritahani; Azlan, Faris Farhan; Noormaizan, Khairul Akmal; Afiqa, Nurul; Nisa, Syed Qamrun; Ghazali, Ahmad Badaruddin; Pranolo, Andri; Saifullah, Shoffan
International Journal of Advances in Intelligent Informatics Vol 11, No 2 (2025): May 2025
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v11i2.1529

Abstract

Accurate segmentation of radiolucent lesions in dental Cone-Beam Computed Tomography (CBCT) is vital for enhancing diagnostic reliability and reducing the burden on clinicians. This study proposes a privacy-preserving segmentation framework leveraging multiple U-Net variants—U-Net, DoubleU-Net, U2-Net, and Spatial Attention U-Net (SA-UNet)—to address challenges posed by limited labeled data and patient confidentiality concerns. To safeguard sensitive information, Differential Privacy Stochastic Gradient Descent (DP-SGD) is integrated using TensorFlow-Privacy, achieving a privacy budget of ε ≈ 1.5 with minimal performance degradation. Among the evaluated architectures, U2-Net demonstrates superior segmentation performance with a Dice coefficient of 0.833 and an Intersection over Union (IoU) of 0.881, showing less than 2% reduction under privacy constraints. To mitigate data annotation scarcity, a pseudo-labeling approach is implemented within an MLOps pipeline, enabling semi-supervised learning from unlabeled CBCT images. Over three iterative refinements, the pseudo-labeling strategy reduces validation loss by 14.4% and improves Dice score by 2.6%, demonstrating its effectiveness. Additionally, comparative evaluations reveal that SA-UNet offers competitive accuracy with faster inference time (22 ms per slice), making it suitable for low-resource deployments. The proposed approach presents a scalable and privacy-compliant framework for radiolucent lesion segmentation, supporting clinical decision-making in real-world dental imaging scenarios.