Claim Missing Document
Check
Articles

Found 3 Documents
Search

KAJIAN PENERAPAN MATRIKS DALAM KEHIDUPAN SEHARI-HARI UNTUK MENINGKATKAN MOTIVASI BELAJAR: A Literature Review on the Application of Matrices in Daily Life to Enhance Learning Motivation Yahya, Muhammad Hamdi; Raharjo, Karunia; Ammarulloh, Satriaji; Putri, Adhysta Az-zahra; Himawan, Inggil
Al-Aqlu: Jurnal Matematika, Teknik dan Sains Vol. 3 No. 2 (2025): Juli 2025
Publisher : Yayasan Al-Amin Qalbu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59896/aqlu.v3i2.296

Abstract

This article is a literature review aimed at analyzing how the application of matrix concepts in real-life contexts can influence students’ motivation to learn mathematics. The main issue addressed is the lack of student interest due to the abstract nature of matrix material, which is often disconnected from their daily experiences. To address this, the study synthesizes findings from previous academic works and analyzes the effectiveness of contextual approaches in mathematics education. The review reveals that learning strategies such as Problem-Based Learning (PBL), Realistic Mathematics Education (PMRI), and Contextual Teaching and Learning (CTL) significantly enhance students' conceptual understanding and engagement. When matrix concepts are presented through familiar situation such as scheduling, task allocation, or simple data processing students become more confident, involved, and interested in learning. In conclusion, aligning mathematical content with everyday experiences provides a more relevant and enjoyable learning process that fosters stronger learning motivation and a better appreciation for the practical use of mathematics.
EFISIENSI MEMORI DAN WAKTU: ARRAY SORTING ALGORITHM VS ALGORTIMA PENGURUTAN TRADISIONAL MENGGUNAKAN PYTHON Musyaffa, Muhammad Zaki; Raharjo, Karunia; Faiz, Muhammad; Ammarulloh, Satriaji; Pujiono, Imam Prayogo
JEIS: Jurnal Elektro dan Informatika Swadharma Vol 5, No 2 (2025): JEIS EDISI JULI 2025
Publisher : Institut Teknologi dan Bisnis Swadharma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56486/jeis.vol5no2.785

Abstract

The development of information technology has transformed data storage from physical to digital formats. However, digital data is difficult to access and verify without an effective sorting mechanism in place. This study compares the memory usage efficiency and execution time of the array sorting algorithm with two traditional sorting algorithms, bubble sort and quick sort, using a quantitative comparative method, all implemented in Python. Experiments were conducted on random numerical data sets of 100, 1.000, and 10.000 elements. Results show that the Array Sorting Algorithm excels in computational speed, with average times of 231.500, 352.500, and 1.214.150 nanoseconds for each data scale. However, it requires slightly larger memory (2.320 – 84.304 bytes). In contrast, Bubble Sort is the slowest but most memory-efficient, while Quick Sort is intermediate in both aspects. On the other hand, the Array Sorting Algorithm recorded relatively higher memory usage compared to the traditional sorting algorithms, Bubble Sort and Quick Sort. Based on these findings, algorithm selection should be based on the primary need. The Array Sorting Algorithm can be used when execution speed is a priority, and Bubble Sort is suitable for environments with memory constraints and small datasets. At the same time, Quick Sort offers a balance between speed and memory usage efficiency.Perkembangan teknologi informasi telah mentransformasi penyimpanan data dari format fisik ke digital. Namun, tanpa mekanisme pengurutan yang efektif, data digital sulit diakses dan diverifikasi. Penelitian ini membandingkan efisiensi penggunaan memori dan waktu eksekusi Array Sorting Algorithm dengan dua  algoritma pengurutan tradisional, Bubble Sort dan Quick Sort menggunakan metode komparatif kuantitatif., semuanya diimplementasikan dalam bahasa Phyton. Eksperimen dilakukan pada kumpulan data numerik acak berukuran 100, 1.000, dan 10.000 elemen. Hasil menunjukkan bahwa Array Sorting Algorithm unggul dalam kecepatan komputasi dengan rata-rata waktu 231.500, 352.500, dan 1.214.150 nanodetik untuk masing-masing skala data, namun memerlukan memori sedikit lebih besar (2.320 – 84.304 byte), sedangkan Bubble Sort paling lambat namun paling hemat memori, dan Quick Sort menengah di kedua aspek. Di sisi lain, Array Sorting Algorithm mencatatkan pemakaian memori yang relatif lebih tinggi dibanding algoritma pengurutan tradisional Bubble Sort dan Quick Sort. Berdasarkan hasil dari temuan ini pemilihan algoritma harus didasarkan pada kebutuhan utama, Array Sorting Algorithm bisa digunakan saat kecepatan eksekusi menjadi prioritas, Bubble Sort cocok untuk lingkungan dengan keterbatasan memori dan dataset berukuran kecil, sedangkan Quick Sort menawarkan keseimbangan antara kecepatan dan efisiensi penggunaan memori
OPTIMALISASI BASIS DATA SISTEM KEUANGAN UMKM PIZZAUPPS UNTUK MENGATASI REDUDANSI DAN ANOMALI DATAI DATA Faiz, Muhammad; Raharjo, Karunia; Agus, Muhammad; Nur, Muhammad Zidni; Nugroho, Dicky Anggriawan; Pujiono, Imam Prayogo
JRIS : Jurnal Rekayasa Informasi Swadharma Vol 6, No 1 (2026): JURNAL JRIS EDISI JANUARI 2026
Publisher : Institut Teknologi dan Bisnis (ITB) Swadharma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56486/jris.vol6no1.1049

Abstract

Digital financial systems are crucial for MSMEs to improve the efficiency and accuracy of record-keeping. Unfortunately, many MSMEs, including PizzaUpps, still rely on poorly structured flat-file record-keeping systems. This condition causes serious problems, such as duplication of customer and product data, and inconsistencies in transaction information, due to the lack of integrity controls in their databases. To address this, this study aims to redesign and optimize the database architecture of PizzaUpps’ financial system. Using the Waterfall model, the main methodology is database normalization, which transforms the data structure from unnormalized form (UNF) to Third Normal Form (3NF) and Boyce-Codd Normal Form (BCNF). The results show that the normalization process successfully produces a new, structured relational database design. This design consists of interconnected main tables, including Customer, Product, Transaction, and Transaction_Detail, and is supported by an Entity Relationship Diagram (ERD) and a validated physical relationship schema. Foreign keys and referential integrity constraints ensure data integrity across tables. The proposed database design proved effective in eliminating data redundancy and anomalies, significantly improving the accuracy, consistency, and integrity of PizzaUpps’ financial data. This design is highly recommended as a basis for developing a more comprehensive digital financial or accounting information system in the future.Peran sistem keuangan digital sangat krusial bagi UMKM untuk meningkatkan efisiensi dan keakuratan pencatatan. Sayangnya, banyak UMKM, termasuk PizzaUpps, masih mengandalkan sistem pencatatan flat-file yang tidak terstruktur dengan baik. Kondisi ini menyebabkan masalah serius seperti duplikasi data pelanggan dan produk, serta inkonsistensi informasi transaksi, karena tidak adanya kontrol integritas pada basis data mereka. Untuk mengatasi hal ini, penelitian ini bertujuan untuk merancang ulang dan optimalisasi arsitektur basis data sistem keuangan PizzaUpps. Menggunakan model Waterfall, metodologi utamanya adalah normalisasi basis data, yaitu mentransformasikan struktur data dari bentuk tidak ternormalisasi (UNF) menjadi Third Normal Form (3NF) dan Boyce-Codd Normal Form (BCNF). Hasil penelitian menunjukkan bahwa proses normalisasi berhasil menciptakan desain basis data relasional yang baru dan terstruktur. Desain ini terdiri dari tabel-tabel utama yang saling terhubung, seperti Pelanggan, Produk, Transaksi, dan Detail_Transaksi, dan dilengkapi dengan Entity Relationship Diagram (ERD) serta skema relasi fisik yang tervalidasi. Integritas data antar tabel dijamin melalui penggunaan foreign key dan batasan integritas referensial. Desain basis data yang diusulkan terbukti efektif dalam menghilangkan redundansi dan anomali data, secara signifikan meningkatkan akurasi, konsistensi, dan integritas data keuangan PizzaUpps. Desain ini sangat direkomendasikan sebagai dasar untuk pengembangan sistem informasi keuangan atau akuntansi digital yang lebih lengkap di masa depan.