p-Index From 2021 - 2026
0.408
P-Index
This Author published in this journals
All Journal Atom Indonesia
Sucipta, S
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Safety Assessment of TENORM Waste Landfill on Bangka Island Using Resrad Offsite 4.0 Setiawan, A.; Kurniati, M.; Iskandar, D.; Sucipta, S; Pratama, H. A.; Setiawan, R.
Atom Indonesia Vol 51, No 2 (2025): AUGUST 2025
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/aij.2025.1570

Abstract

Bangka Island faced serious environmental challenges due to TENORM (Technologically Enhanced Naturally Occurring Radioactive Materials) waste from tin mining activities. The waste contained radionuclides such as U-238, Th-232, and K-40, which could have had detrimental effects on human health and the environment. To solve this problem, TENORM waste should be disposed of in the class II landfill facility. The Class II landfill was more efficient by cost than the Class I landfill. The landfill design provide a waste contamination layer with dimensions of 160 × 160 × 3 meters. This landfill class has 5 layers from top to bottom cover layers such as the contamination or waste layer, protective coating layer, layer for collecting and transferring, geomembrane layer, soil barrier layer, leak detection system layer, and base layer, which each layer was intended to safeguard against contamination. These protective layers were required to adhere to precise specifications regarding material, thickness, and hydraulic conductivity to effectively manage waste and leachate. Additionally, the base layer consisted of compacted clay, designed to regulate hydraulic conductivity and offer sustained environmental protection. This paper will discuss the radiological safety assessment of this landfill design. This design was modeled using Resrad Offsite 4.0 software to assess its radiation safety in order to fulfill landfill safety requirements. The simulation results showed a maximum radiation dose of 0.40537 mSv per year at a distance of 200 meters from the landfill center, which was estimated to persist for 29,265 years after the landfill was closed. The cancer risk probability was estimated to be 4.25 × 10⁻⁴. More importantly, this dose was still below the safe limit set by BAPETEN (Nuclear Energy Regulatory Agency) for public radiation exposure, which is 1 mSv per year. The class II landfill design, based on the simulation results, was safe for public health and the environment.
Seismic Risk Analysis of the Serpong Nuclear Complex and the RSG-GAS Reactor Using Microseismic Methods Satriyo, A.; Suryanto, W.; Anggono, T.; Subekti, M.; Sucipta, S; Jatnika, J.; Swastikarani, R.; Sugianto, N.
Atom Indonesia Vol 51, No 2 (2025): AUGUST 2025
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/aij.2025.1596

Abstract

The G.A. Siwabessy research reactor (RSG-GAS), located in the Serpong Nuclear Complex (SNC), is a critical component of Indonesia's nuclear research infrastructure. This study aims to assess the seismic safety of the RSG-GAS reactor and its surrounding complex using microseismic methods, specifically the Horizontal-to-Vertical Spectral Ratio (HVSR) and Floor Spectral Ratio (FSR) techniques. HVSR measurements conducted across the B. J. Habibie Science and Technology Area (KST) revealed an average natural frequency (f₀) of 3.49 Hz (range: 2.84-4.43 Hz), amplification factors (A₀) averaging 2.84 (range: 2.11-4.88), and seismic susceptibility indices (Kg) averaging 2.72 (range: 1.34-4.39). The HK9 site, positioned 124 meters from the reactor, exhibited lower-than-average values, indicating reduced seismic vulnerability in the immediate reactor vicinity. FSR analysis was conducted to evaluate key structural parameters, including the Resonance Index (IR), inter-level deviation (γⱼ), peak ground acceleration (αbⱼ), and Building Vulnerability Index (Ktgⱼ). Most IR values fell within the medium-risk range (20.07 %-22.63 %), while one measurement point recorded 3.98 %, indicating high resonance risk. Inter-level deviations remained within acceptable safety thresholds; however, peak ground acceleration values exceeded critical limits at several levels, most notably at FU8 where 272.63 gal was recorded at -6.5 m elevation-significantly surpassing established safety standards. Several Building Vulnerability Index values also exceeded recommended safety limits. The findings demonstrate that while the RSG-GAS facility generally exhibits low-to-moderate seismic amplification and structural vulnerability, targeted structural reinforcements are essential at critical locations, particularly at the FU8 level. This study provides a comprehensive framework for enhancing seismic resilience of nuclear facilities in seismically active regions and contributes to the long-term safety assessment protocols for Indonesia's nuclear infrastructure.