This Author published in this journals
All Journal Greensusmater
Claim Missing Document
Check
Articles

Found 5 Documents
Search

Photocatalytic degradations of organic pollutants in wastewater using hydrothermally grown ZnO nanoparticles Phasa, Agita; Aini, Quratul; Siregar, Muhammad Yasin; Sabilla, Sal; Triyadi, Dedi; Aflaha, Rizky; Khan, Mochammad Ghulam Isaq; Nurfani, Eka
Greensusmater Vol. 1 No. 2 (2024)
Publisher : Green and Sustainable Materials Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62755/greensusmater.2024.1.2.39-43

Abstract

The increasing prevalence of organic pollutants in wastewater poses a significant environmental challenge due to their persistence and harmful effects. Photocatalysis using semiconductor nanoparticles, such as ZnO, has emerged as a promising approach for pollutant degradation, but optimizing the structural and functional properties of these materials remains a critical challenge. In this study, ZnO nanoparticles were synthesized via a hydrothermal method with varying durations (4, 6, and 8 hours) to investigate the impact of synthesis time on their photocatalytic efficiency. The structural and compositional properties were characterized using SEM, XRD, and EDS analyses, revealing that longer synthesis times improve crystallinity and alter the Zn:O atomic ratio, affecting defect density and stoichiometry. Photocatalytic performance was evaluated through the degradation of an organic pollutant under UV illumination. ZnO-6h exhibited the highest rate constant (k=0.017 min−1), outperforming ZnO-4h (k=0.016 min−1) and ZnO-8h (k=0.013 min−1). This superior activity is attributed to an optimal combination of high crystallinity, intermediate morphology, and the presence of oxygen vacancies that enhance charge carrier dynamics. The findings demonstrate that synthesis duration is a critical parameter in tuning the structural and photocatalytic properties of ZnO nanoparticles. This study provides insights into the design of ZnO-based photocatalysts and underscores their potential for environmental remediation. Future research could extend these findings by exploring scalability and pollutant-specific applications, paving the way for more efficient wastewater treatment technologies.
Congo red dye adsorption using ZnAl layered double hydroxide fabricated using hydrothermal methods Fitri, Anisa; Lumbanraja, Febriwan Rizki; Hanifah, Istiara Rizqillah; Prasetya, Bayu; Aflaha, Rizky; Putra, Septia Eka Marsha
Greensusmater Vol. 1 No. 2 (2024)
Publisher : Green and Sustainable Materials Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62755/greensusmater.2024.1.2.44-50

Abstract

Industrial dye pollutants, particularly azo dyes like Congo red, pose significant environmental and health risks due to their toxic and non-biodegradable nature. This study assesses ZnAl Layered Double Hydroxide (ZnAl LDH) as an effective adsorbent, incorporating comprehensive materials characterization and adsorption isotherm analyses. Materials characterization using SEM and XRD confirmed the structural integrity and morphological suitability of ZnAl LDH for dye adsorption. Results demonstrated that ZnAl LDH, particularly the HMTA-based variant (h-ZnAl LDH), achieved superior adsorption capacities of up to 17.8 mg/g, significantly outperforming the urea-based (u-ZnAl LDH) with capacity of 12.3 mg/g. Kinetic analysis showed that the pseudo-second-order (PSO) model provided a better fit (R2 = 0.995) than the pseudo-first-order (PFO) model, indicating that chemisorption plays a dominant role in the adsorption mechanism. The adsorption process was also best described by the Langmuir isotherm model (R2 = 0.989), indicating monolayer adsorption on a homogeneous surface, while the Freundlich model (R2 = 0.944) also provided a reasonable fit, suggesting some degree of multilayer adsorption on heterogeneous surfaces. The superior performance of HMTA-based ZnAl LDH presents a significant advancement in wastewater treatment technologies
Characterization of carbon dots synthesized from plant-based extracts via the hydrothermal method Wardana, Fatah Ari Kusuma; Maharani, Chlara Naren; Arbi, Aliffia Widyasari Putri; Zandi F., Mohammad Arya; Aflaha, Rizky
Greensusmater Vol. 2 No. 2 (2025)
Publisher : Green and Sustainable Materials Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62755/greensusmater.2025.2.2.49-54

Abstract

Cdots are carbon-based nanoparticles and luminescent materials that are safe for humans, the environment, and have many potential applications. Natural precursors using local plants can be utilized, and a green synthesis approach can be used to fabricate Cdots that are advantageous in terms of sustainability, availability, low cost, and minimal toxic waste. In this study, the hydrothermal method was chosen because the process is simple, does not require a catalyst, and is suitable for natural materials. The fabricated Cdots from various plant-based extract precursors using the hydrothermal method are investigated for the chemical and optical property changes that occur during the conversion of natural extracts into Cdots. Fourier-transform infrared (FTIR) spectra show that functional groups such as O–H and C=C remain present after the Cdots synthesis process. The UV-Vis spectra show a shift in the absorption band, indicating the formation of sp² aromatic domains and π-π* transition in the Cdots structure, compared to plant-based extracts. These results show great potential of local plants as base material for producing Cdots that can be beneficial for various applications.
Development and materials characterization of hydrothermally grown niobium-doped BiVO4 for ciprofloxacin and methylene blue degradation Kurnia, Nadiya Rifqah; Amanda, Tia; Nurfitria, Rima; Aflaha, Rizky; Widakdo, Januar; Rianjanu, Aditya
Greensusmater Vol. 2 No. 2 (2025)
Publisher : Green and Sustainable Materials Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62755/greensusmater.2025.2.2.55-61

Abstract

This study reports the synthesis and characterization of niobium-doped BiVO4 (NbX-BiVO4, X = 0, 2, 4, 6 mol%) photocatalysts via a hydrothermal method, aimed at enhancing the degradation of organic pollutants under UV irradiation. X-ray diffraction (XRD) analysis confirmed the preservation of the monoclinic BiVO4 structure in all samples, although minor secondary features were detected in doped compositions. Field emission scanning electron microscope (FESEM) imaging revealed progressively rougher, nanostructured surfaces with increasing Nb content, while UV-Vis and photoluminescence (PL) spectroscopy indicated modified band structures and reduced recombination rates. Photocatalytic performance was evaluated using ciprofloxacin (CIP) and methylene blue (MB) as model pollutants. For CIP, the highest activity was achieved by Nb6-BiVO4 (k value of 0.09 min‒1 g–1), attributable to enhanced charge separation and increased surface texture. In contrast, MB degradation favored the undoped BiVO4 (k value of 0.29 min‒1 g–1) due to stronger dye adsorption, despite the optical improvements in doped samples. The findings demonstrate that Nb doping improves BiVO4 photocatalytic activity through synergistic structural and electronic effects, with pollutant-specific responses highlighting the importance of matching catalyst design to target contaminant properties.
Niobium oxide electrode performance boosted by molybdenum doping and calcination for supercapacitor applications Al Mubarok, Muhammad Ramadhan; Nurfitria, Rima; Aflaha, Rizky; Nurfani, Eka; Rianjanu, Aditya
Greensusmater Vol. 2 No. 2 (2025)
Publisher : Green and Sustainable Materials Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62755/greensusmater.2025.2.2.62-69

Abstract

Niobium pentoxide (Nb2O5) is a promising pseudocapacitive material for supercapacitor applications due to its high theoretical capacitance and electrochemical stability. However, its practical performance is limited by low electrical conductivity and poor ion transport kinetics. In this work, we report the enhancement of Nb2O5 electrode performance through molybdenum (Mo) doping and thermal calcination. Mo-doped Nb2O5 nanostructures were synthesized via a hydrothermal method followed by calcination at 500 °C. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) confirmed a rougher morphology and homogeneous Mo distribution in the doped sample. X-ray diffraction (XRD) revealed a structural transformation from a deformed orthorhombic phase in pristine Nb2O5 to a more crystalline pseudohexagonal phase in Mo-Nb2O5-500. Electrochemical analysis demonstrated a significant improvement in capacitive behavior, with Mo-Nb2O5-500 achieving a specific capacitance of 55.3 F/g at 5 mV/s, which is five times higher than the undoped sample. All electrodes exhibited stable cycling performance. These results highlight the synergistic role of Mo doping and calcination in enhancing the electrochemical properties of Nb2O5, offering a viable approach for developing high-performance pseudocapacitor electrodes.