Claim Missing Document
Check
Articles

Found 14 Documents
Search

Electrospun Nanofiber Poly (3,4-ethylenedioxytriophene): poly (styrene sulfonate) / poly (vinyl alcohol) as Strain Sensor Application Chotimah Chotimah; Aditya Rianjanu; Bimo Winardianto; Misbachul Munir; Indriana Kartini; Kuwat Triyana
Journal of Science and Applicative Technology Vol 5 No 2 (2021): Journal of Science and Applicative Technology December Chapter
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat (LPPM), Institut Teknologi Sumatera, Lampung Selatan, Lampung, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35472/jsat.v5i2.390

Abstract

A strain sensor based on poly (3,4-ethylenedioxytriophene): poly (styrene sulfonate)/poly (vinyl alcohol) (PEDOT: PSS/PVA) nanofiber has been successfully fabricated by electrospinning technique. Patterned copper wires were deposited on the mica flexible substrate with the distance of 1 mm. The sensor then characterized with various strain by one side bending. The conductivity of as-spun nanofiber mats can be adjusted from 0.03 to 1.2 µS cm-1 with various concentration of PVA and depends on its structure and its nanofiber diameter. The sensing mechanism of nanofiber-based strain sensor is due to the common piezoelectric effect of PEDOT:PSS polymer and unique nanostructure of nanofiber mats. When the sensor stretched, the length of nanofiber increase affecting the geometrical change and lead the increasing in resistance. This sensor shows good repeatability with gauge factor of 17. The performance of PEDOT:PSS/PVA nanofiber based strain sensor make nanofiber mats as promising alternative materials for strain sensor application.
Physical and Mechanical Properties of Bamboo Oriented Strand Board Prepared from Alkali-Immersed Strands Sena Maulana; Tarmizi Taher; Aditya Rianjanu; Melany Febrina; Sarah Agustina; Rio Ardiansyah Murda; Wahyu Hidayat; Yazid Bindar
Science and Technology Indonesia Vol. 8 No. 1 (2023): January
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2023.8.1.1-8

Abstract

In this work, the physical and mechanical properties of bamboo oriented strand board (BOSB) prepared from alkali-immersed strands were examined. The Dendrocalamus asper strands were modified with alkali treatment by immersing them in 1% sodium hydroxide solution for 1, 2, and 3 hours. Three-layers BOSBs (30 x 30 x 0.9 cm3) were prepared using phenol-formaldehyde (PF) adhesive of 8% concentration and 1% paraffin. According to JIS A 5908:2003 Standard, the physical and mechanical characteristics of BOSB were evaluated (JSA, 2003). The study showed that alkali treatment improved the dimensional stability of BOSB. Immersion in 1% sodium hydroxide solutions enhanced internal bonding (IB). The longer the immersion time, the better the WA, TS, and IB values. However, alkali treatment decreased the bending strength, i.e., modulus of elasticity (MOE) and modulus of rupture (MOR). The physical and mechanical properties of all BOSBs met the commercial standard, except the BOSBs prepared from strand with alkali immersion treatment by 1% sodium hydroxide solution for 3 hours. Alkali immersion treatment of D. asper strands for producing BOSB for 1-2 hours was still acceptable. The results could provide an alternative method to produce high-performance oriented strand board using bamboo as the raw materials.
Electrospun Rare-Earth Metal Oxide (CeO2 ) Nanofiber for the Degradation of Congo Red Aqueous Dyes Rianjanu, Aditya; Haloho, Trivendi; Pasaribu, Joshua Leonardo; Fahmi, Achmad Gus; Nurfani , Eka; Sipahutar, Wahyu Solafide; Yudistira, Hadi Teguh; Taher, Tarmizi
Science and Technology Indonesia Vol. 10 No. 1 (2025): January
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2025.10.1.123-130

Abstract

The persistent presence of organic dyes like Congo Red (CR) in wastewater poses a significant environmental challenge. In this study, CeO2 nanofibers (CeO2-NF) were successfully synthesized via electrospinning followed by calcination as potential photocatalysts for the degradation of CR pollutants in aqueous solutions. The synthesized nanofibers were characterized using field emission scanning electron microscopy coupled with energy dispersive X-Ray Spectroscopy (FESEM-EDS) for morphological and elemental analyses, X-Ray Diffraction (XRD) for crystalline structure, and Fourier transform infrared (FTIR) spectroscopy for molecular properties. Photocatalytic degradation experiments were conducted under UVC light irradiation, with the CeO2-NF1, CeO2-NF2, and CeO2-NF3 samples achieving CR degradation percentages of 95.6%, 96.9%, and 95.2%, respectively, after 130 minutes of reaction time. Kinetic analysis revealed that the photocatalytic degradation followed pseudo-first-order kinetics, with rate constants of 0.020 min-1, 0.024 min-1, and 0.025 min-1 for CeO2-NF1, CeO2-NF2, and CeO2-NF3, respectively, highlighting the superior performance of CeO2-NF3. These results indicate that CeO2NF could serve as an effective material for the photocatalytic degradation of organic dyes, offering a promising approach for wastewater treatment applications.
Blueshift of the optical bandgap in ZnO films by controlling the substrate temperature Nurfani, Eka; Chotimah, Cindy; Anrokhi, M.S.; Kadja, G.T.M.; Sipahutar, W.S.; Mustaqim, A.; Rianjanu, A.
Jurnal Fisika dan Aplikasinya Vol 21, No 1 (2025)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24604682.v21i1.20160

Abstract

This study investigates the growth of ZnO thin films using the spray pyrolysis method, focusing on the effect of substrate temperature on the optical bandgap. By varying the deposition temperature from 300 to 500 °C, we aim to understand how temperature influences the optical properties of ZnO films. The films were characterized using X-ray diffraction (XRD) and UV-visible spectroscopy (UV-Vis). At 300 °C, the absorption was lowest, and the optical bandgap increased from 3.20 eV at 300 °C to 3.70 eV at 500 °C. These findings are crucial for developing ZnO materials for optoelectronic applications using an efficient and cost-effective deposition method.
Role of Ni dopant on the improvement of ZnO-based reusable photocatalytic materials Nurfani, Eka; Firdaus, Azka R.; Triyadi, Dedi; Rianjanu, Aditya
Greensusmater Vol. 1 No. 2 (2024)
Publisher : Green and Sustainable Materials Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62755/greensusmater.2024.1.2.51-56

Abstract

This study investigates the impact of Ni doping on the enhancement of ZnO-based reusable photocatalytic materials. Ni concentrations derived from nickel chloride hexahydrate were 0 wt% (ZN-1), 1 wt% (ZN-2), and 3 wt% (ZN-3). Field-emission scanning electron microscopy (FESEM) analysis reveals a significant morphological transformation from flower-like structures in pure ZnO to nanoridges in Ni-doped ZnO. X-ray diffraction data indicate a reduction in crystalline quality with Ni incorporation. UV-Vis spectroscopy shows an increase in the bandgap from 3.22 eV for pure ZnO (ZN-1) to 3.34 eV for Ni-doped ZnO (ZN-2 and ZN-3). Photocatalytic efficiency improves markedly, achieving 30%, 60%, and 80% degradation for ZN-1, ZN-2, and ZN-3, respectively, after 1-hour illumination. Notably, the photocatalytic performance remains robust even after five recycling cycles. These findings reveal the potential of Ni-doped ZnO as a cost-effective, reusable, and highly efficient photocatalytic material.
Effect of Zeolite Mesh Size Variation on the Filtration Performance of Zeolite-PAN/PVDF Nanofiber for Methylene Blue Dye Removal Buya, Dheace Gracesela; Aflaha , Rizky; Rianjanu, Aditya
Greensusmater Vol. 2 No. 1 (2025)
Publisher : Green and Sustainable Materials Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62755/greensusmater.2025.2.1.1-6

Abstract

Water pollution from industrial effluents, particularly synthetic dyes like methylene blue (MB), poses significant environmental challenges. Electrospun nanofiber membranes based on polyacrylonitrile (PAN) and polyvinylidene fluoride (PVDF) are promising for filtration due to their high surface area and porous structure. However, their limited dye adsorption capacity requires enhancement, which can be achieved by incorporating natural zeolite particles known for their high ion-exchange capacity. In this study, we developed Ze-PAN/PVDF nanofiber membranes using zeolite with varying particle sizes (mesh sizes 50, 100, 200, 300) via vacuum filtration and evaluated their performance in MB dye removal. All Ze-PAN/PVDF membranes exhibited high initial dye rejection (above 97%) in the first two cycles, while the control PAN/PVDF membrane showed minimal rejection, decreasing from 35% to 7% over five cycles. The decline in rejection efficiency became noticeable from the third cycle, with values of 67%, 39%, 74%, and 86% for Ze50, Ze100, Ze200, and Ze300, respectively. Permeation flux was significantly affected by zeolite particle size, with the PAN/PVDF membrane maintaining a high flux (>10,000 L m⁻² h⁻¹ bar⁻¹), while Ze50-PAN/PVDF dropped to 260 ± 30 L m⁻² h⁻¹ bar⁻¹. Finer particles in Ze300-PAN/PVDF maintained relatively higher flux (370 ± 200 L m⁻² h⁻¹ bar⁻¹), indicating reduced pore blockage. These findings highlight the importance of optimizing zeolite particle size to achieve high dye removal efficiency and stable flux, making Ze300-PAN/PVDF a promising candidate for wastewater treatment applications.
Tuning Nanofiber Morphology and Hydrophobicity via PVDF-co-HFP Polymer Concentration Naim, Naufaldin Adam; Rianjanu, Aditya
Greensusmater Vol. 2 No. 1 (2025)
Publisher : Green and Sustainable Materials Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62755/greensusmater.2025.2.1.7-11

Abstract

This study investigates the effect of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) concentration on the morphological and surface wettability properties of electrospun nanofibers. Nanofiber mats were fabricated using electrospinning with PVDF-co-HFP concentrations ranging from 12 wt% to 18 wt%. Scanning electron microscopy (SEM) analysis revealed that increasing polymer concentration resulted in larger and more uniform fiber diameters, ranging from approximately 235 nm to 560 nm. Fourier-transform infrared (FTIR) spectroscopy confirmed the preservation of the chemical structure, with characteristic peaks associated with CF₂ and C–F groups, and the presence of both α- and β-phases of PVDF. Water contact angle (WCA) measurements indicated a marked increase in hydrophobicity, with WCA values rising from ~108° for PVDF-co-HFP12 to ~128° for PVDF-co-HFP18. This enhancement is attributed to increased surface roughness and fiber diameter, in line with the Cassie–Baxter wetting model. The results demonstrate that polymer concentration is a critical parameter in tailoring nanofiber morphology and wettability, providing a straightforward strategy for designing functional materials in applications such as water-repellent coatings, filtration membranes, and sensing platforms.
High Surface Area Ortho-Nb2O5 as Bifunctional Adsorbent and Photocatalyst for Efficient Removal of Tetracycline Antibiotics from Wastewater Taher, Tarmizi; Maharani, Putri; Muhtar, Sephia Amanda; Munandar, Andika; Sidiq, Ahmad Nur; Rianjanu, Aditya
Science and Technology Indonesia Vol. 10 No. 3 (2025): July
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2025.10.3.916-923

Abstract

The presence of antibiotics in aquatic environments poses significant environmental and health risks, requiring advanced treatment strategies for their removal. In this study, we report the straightforward hydrothermal synthesis of high surface area ortho-Nb2O5  and its dual role as both an adsorbent and photocatalyst for the removal of tetracycline (TC) from wastewater. The structural and  morphological properties of ortho-Nb2O5 were systematically investigated using XRD, FTIR, FESEM-EDS, and BET surface area analysis. The ortho-Nb2O5 synthesized at 72 hours (Nb2O5_72) exhibited a high BET surface area of 242.42 m2/g, mesoporosity, and a bandgap of 3.28 eV, enabling efficient UV-driven photocatalysis. Adsorption studies revealed a high TC removal capacity of 32 mg/g at equilibrium. Under UV irradiation, ortho-Nb2O5 achieved significant photocatalytic degradation of TC.
Precision Engineered Graphene Oxide Membranes Optimizing Thin Film Composite Layers for Solvent and Dye Separation Widakdo, Januar; Fadly Azril Priodani; Hannah Faye M. Austria; Tsung Han-Huang; Aditya Rianjanu; Canggih Setya Budi; Anawati Anawati; Wei-Song Hung
Science and Technology Indonesia Vol. 10 No. 4 (2025): October
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2025.10.4.1031-1048

Abstract

Organic solvent nanofiltration (OSN) is a promising separation technology with low energy consumption and environmental benefits. However, membrane stability in harsh organic solvents remains a challenge. Graphene oxide (GO) is widely explored due to its exceptional mechanical strength and selective permeability; however, further modifications are necessary to optimize its performance. This study investigates the enhancement of GO membranes by incorporating a thin-film composite (TFC) layer through interfacial polymerization using polyethyleneimine (PEI) and trimethyl chloride (TMC). The fabricated membranes were characterized for theirmorphology, chemical structure, and filtration performance using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), and contact angle measurements. Filtration tests were conducted with ethanol and Congo red dye solutions. The optimized membrane, composed of 0.1 wt% PEI 800 Mw and 0.05 wt% TMC, exhibited superior performance, demonstrating a permeance of 8.06 ± 2.31 L L m-2 h-1 bar-1 and a rejection rate of 95.20 ± 1.54% for Congo red dye. Additionally, the membrane exhibited a charge-dependent separation mechanism, achieving a 98.64 ± 0.38% rejection of methyl green due to both affinity and Donnan effects. These findings provide insights into developing advanced OSN membranes for efficient solvent purification and dye separation.
Durability to Natural Weathering of Methylene Diphenyl Diisocyanate-Bonded Bamboo Oriented Strand Board Lestari, Dini; Suwanda, Astri Aulia; Murda, Rio Ardiansyah; Maulana, Muhammad Iqbal; Augustina, Sarah; Rianjanu, Aditya; Taher, Tarmizi; Hidayat, Wahyu; Maulana, Sena; Lubis, Muhammad Adly Rahandi
Jurnal Sylva Lestari Vol. 12 No. 1 (2024): January
Publisher : Department of Forestry, Faculty of Agriculture, University of Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jsl.v12i1.839

Abstract

This study aimed to examine the qualities of bamboo-oriented strand board (BOSB) made from Dendrocalamus asper bamboo strands, both with and without steam treatment. Furthermore, the effect of exposure length to natural weathering on the physical and mechanical characteristics of BOSB was examined. The steam treatment lasted one hour at 126°C and a pressure of 0.14 MPa. Methylene diphenyl diisocyanate (MDI) and paraffin were utilized as adhesives and additives, with concentrations of 5% and 1%, respectively, based on oven-dried weight. The BOSB was exposed to natural weathering in different exposure durations (0, 1, and 3 months) in Bukit Bogor Raya Pajajaran, West Java, Indonesia. Subsequently, the BOSB was tested for its physical and mechanical properties and retention value. The result showed that steam treatment improved the dimensional stability and mechanical properties of BOSB bonded with MDI adhesive more than untreated BOSB. However, steam treatment has a better protection level against natural degradation than untreated samples. These confirm that BOSB with steam treatment is a durable and sustainable construction material. Keywords: bamboo, methylene diphenyl diisocyanate, natural weathering, oriented strand board, steam treatment