Abdullateef, Ayodele Isqeel
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Development Of A Cloud-Based Condition Monitoring Scheme For Distribution Transformer Protection Abdullateef, Ayodele Isqeel; Issa, Abdulkabir Olatunji; Sulaiman, Abdullah; Salami, Momoh-Jimoh Eyiomika; Otuoze, Abdulrahaman
Computer Engineering and Applications Journal (ComEngApp) Vol. 12 No. 1 (2023)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Distribution transformers are a necessity to ensure a reliable power supply to consumers and their inability to function properly or even breakdown should be avoided due to the high cost of replacing them. Distribution transformers are large in numbers and randomly distributed in cities and there is a need to accurately monitor their daily/hourly performance. To achieve this, real-time monitoring of the transformer’s health status is proposed rather than the use of the traditional approach involving physical inspection and testing which is slow, tedious and time-consuming. This paper presents a cloud-based monitoring scheme applied to a prototype distribution transformer. A 10kVA, 0.415 kV prototype distribution transformer has been acquired and connected to three residences for data acquisition. A data acquisition system has been developed to monitor and record the parameters of the prototype transformer for 14 days. The parameters, monitored in real-time include load current, phase voltage, transformer oil level, ambient temperature and oil temperature. The acquired real-time data of the transformer is validated with the standard measuring instrument. An algorithm was developed to transmit and log the data to ThinkSpeak cloud server via node MCU (ESP 8266). Results obtained in this study, which can be visualized via the graphical user interface of ThinkSpeak, indicate that the proposed scheme can acquire vital data from the distribution transformers and transmit the information to the monitoring centre.
Enhanced Short-Term Residential Load Forecasting Using K- means Clustering and Iterative Residual LSTM Networks Sulaiman, Abdullahi; Abdullateef, Ayodele Isqeel; Issa, Abdulkabir Olatunji; Issa, Abdulrasheed Olayinka
Computer Engineering and Applications Journal (ComEngApp) Vol. 14 No. 1 (2025)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Accurate short-term load forecasting (STLF) is essential for optimizing energy management systems, ensuring operational efficiency, and balancing supply and demand in power grids. This study introduces a hybrid model, K-RNLSTM, which integrates K-means clustering with iterative Residual Long Short-Term Memory (LSTM) networks to improve prediction accuracy. The K-means clustering algorithm categorizes similar load patterns, allowing the model to handle seasonal and hourly variations more effectively. Iterative ResBlocks are incorporated within the LSTM framework to capture complex non-linear dependencies and improve the learning process without suffering from degradation. The model was evaluated using real- world residential electricity consumption data across four seasons: winter, spring, summer, and autumn. The K-RNLSTM model consistently outperformed traditional methods such as Extreme Learning Machines (ELM), Seasonal-Trend Loess (STL), Gated Recurrent Units (GRU), and standard LSTM in terms of Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). The results demonstrated that K-RNLSTM achieved an average RMSE of 0.71, MAE of 0.43, and MAPE of 1.31%, surpassing benchmark models across all seasonal variations. Furthermore, the integration of ResBlocks significantly improved the model's ability to minimize large forecasting errors, particularly during peak demand periods. This research demonstrates the effectiveness of combining clustering techniques with deep learning models for short-term load forecasting, offering a robust solution for power system operators to optimize energy distribution and reduce operational costs.