Idris, La Ode Muhamad
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Internet of Things Based Air Quality Monitoring System with Automatic Notification Azizah, Devi Nur; Heranurweni, Sri; Idris, La Ode Muhamad
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 3 (2025): MALCOM July 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i3.1945

Abstract

Internet of Things (IoT)-based air quality monitoring systems represent a significant advancement in urban environmental management. This research implements a system that integrates PM2.5, PM10, CO2, and NO2 sensors for real-time monitoring of pollutants. The results showed that the integration of IoT technology with cloud computing and machine learning algorithms successfully created a responsive and accurate monitoring system. The model achieved maximum accuracy during the training process, with promising predictive capabilities in real-world implementation. The main findings of the study confirmed that the Weighted Class (WC) approach significantly improved performance in the testing and prediction process by addressing class imbalance in the dataset, while the Data Augmentation (DA) technique did not show the expected improvement due to the intrinsic characteristics of air quality data. The automatic notification system successfully provides early warnings when air quality exceeds specified thresholds, enabling proactive responses from authorities and the public. The implementation of a web-based monitoring dashboard provides comprehensive visualization of data for long-term analysis. This research contributes to the development of smart cities by providing an effective framework for air quality management, supporting data-driven decision-making, and increasing public awareness of environmental conditions.
Sistem Kendali Hybrid Fuzzy-Pid pada Kinematika Robot Berkaki 4 Menggunakan Sensor Gyroscope Idris, La Ode Muhamad; Nugroho, Andi Kurniawan; Daniyah, Daniyah
Elektrika Vol. 15 No. 1 (2023): April 2023
Publisher : Universitas Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26623/elektrika.v15i1.3242

Abstract

Legged robots have attracted the attention of researchers because of their superior adaptation to complex environments compared to wheeled robots. Legged robots are divided into 2 (two) legged Humanoid robots, 4 (four) legged robots, 6 (six) legged robots, and other robots with more legs. Legged robots are robots that can be more adaptable to the terrain compared to wheeled robots in the case of their use in land exploration activities. Although functionally legged robots are more superior, legged robots have their own problems, namely motion control which is more complicated than wheeled robots, therefore the right method is needed to be implemented on the robot.. In this research discusses a 4 (four) legged robot designed in order to move using the inverse kinematic equation on the legs and the body of the robot which is integrated with the MPU6050 gyroscope sensor based on the Hybrid Fuzzy-PID control system. The purpose of this research is to develop a Fuzzy-PID control system that stabilizes the setpoint position in the 4 (four) legged Robot movement system. Fuzzy PID is a combination of PID control and fuzzy logic, where PID control is used to stabilize the system and fuzzy logic is used to improve the system performance. In this research, the Fuzzy-PID control system is developed using the Mamdani (Min-Max) method. The system is later tested by observing the robot's movement response to changes in the gyroscope sensor values. The results obtained were able to get an average output error up to 0.173333% during the response test to the pitch axis of -15°, but in several tests also get the response results that have a considerable error rate is up to 27.31% during the response test to the roll axis of -5°. From the test results of hybrid Fuzzy-PID control, it is obtained that the robot is able to make movements or responses to its stable point by giving reference to the x (roll), y (pitch) and z (yaw) axes where it can be analyzed that the response to the x (roll) and y (pitch) axes will affect the angle of the tibia and femur servo joints, while the response to the z (yaw) axis will affect the angle of the coxa joint servo. Keywords: IMUs (Inertial Measurement Units), Gyroscope, Inverse Kinematics, Hybrid Fuzzy-PID. ABSTRAK Robot berkaki telah menarik perhatian para peneliti karena adaptasinya unggul terhadap lingkungan yang kompleks dibanding robot beroda. Robot berkaki dibagi menjadi robot Humanoid berkaki 2(dua), robot berkaki 4(empat), robot berkaki 6(enam), dan lainnya yang berkaki lebih banyak.Robot berkaki adalah robot yang lebih adaptif terhadap medan tempuh dibandingka robot beroda dalam kasus penggunaannya pada kegiatan eksplorasi daratan. Walaupun secara fungsional robot berkaki lebih unggul, robot berkaki memiliki permasalahan sendiri, yaitu kontrol gerak yang lebih kompleks dibanding robot beroda, maka dari itu dibutuhkan metode yang tepat untuk diterapkan pada robot. Pada penelitian ini membahas tentang robot berkaki 4(empat) yang dirancang untuk dapat bergerak dengan menggunakan persamaan inverse kinematic pada kaki maupun badan robot yang diintegrasikan dengan sensor gyroscope MPU6050 berbasis sistem kendali Hybrid Fuzzy-PID.Tujuan dari penelitian ini adalah mengembangkan sistem kontrol Fuzzy-PID untuk menstabilkan posisi setpoint pada sistem pergerakan Robot berkaki 4(empat). Fuzzy PID adalah gabungan dari kontrol PID dan logika fuzzy, dimana kontrol PID digunakan untuk menstabilkan sistem dan logika fuzzy digunakan untuk memperbaiki performa sistem. Pada penelitian ini sistem kontrol Fuzzy-PID dikembangkan dengan menggunakan metode Mamdani (Min-Max). Sistem ini kemudian diuji dengan mengamati respon pergerakan robot terhadap perubahan nilai sensor gyroscope. Dimana diperoleh hasil mampu memperoleh rata-rata kesalahan hasil keluarannya sampai dengan 0.173333% pada saat pengujian respon terhadap sumbu pitch -15°, namun dibeberapa pengujian juga mendapa tkan hasil respon yang memiliki tingkat kesalahan yang cukup besar sampai dengan 27.31% pada saat pengujian respon terhadap sumbu roll -5°. Dari hasil pengujian kendali hybrid Fuzzy-PID diperoleh hasil robot mampu melakukan pergerakan atau respon untuk menuju titik stabilnya dengan pemberian acuan terhadap sumbu x(roll), y(pitch) dan z(yaw) dimana dapat dianalisa bahwa respon terhadap sumbu x(roll) dan y(pitch) akan mempengaruhi sudut servo sendi tibia dan femur, sedangkan respon terhadap sumbu z(yaw) akan mempengaruhi sudut servo sendi coxa.