Michael Orlando A. Purba
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Implementation of SVM in Predicting Obesity Risk Based on Lifestyle and Dietary Patterns Adinda Febiola; Fahriya Ardiningrum; Michael Orlando A. Purba; Fernando Siahaan; Victor Asido Elyakim P
JOMLAI: Journal of Machine Learning and Artificial Intelligence Vol. 4 No. 1 (2025): Maret 2025
Publisher : Yayasan Literasi Sains Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55123/jomlai.v4i1.5766

Abstract

Obesity is one of the global health issues that has seen a significant increase in recent decades. This condition is closely related to an unbalanced modern lifestyle, such as lack of physical activity, unhealthy eating patterns, and habits of smoking and alcohol consumption. This study aims to analyze the relationship between lifestyle and obesity risk, as well as to evaluate the effectiveness of the Support Vector Machine (SVM) method in predicting the level of obesity risk. The dataset used was obtained from the Kaggle platform, covering various variables such as age, gender, body mass index (BMI), eating habits, sleep patterns, and physical activity. Preprocessing was carried out through data normalization and encoding of categorical variables to ensure data readiness before being input into the model. The SVM model was trained using various training and testing data split ratios and showed a very high accuracy rate, even reaching 100% in some scenarios. These results demonstrate that SVM can effectively identify patterns in lifestyle data that contribute to obesity. Thus, the application of SVM can be a useful predictive tool for healthcare professionals in designing more accurate and efficient data-driven obesity prevention strategies.
Analisis Keamanan Sistem Operasi Android terhadap Serangan Phishing pada Aplikasi E-Wallet Purba, Michael; Fernando Siahaan; M Ihsan Raditya; Michael Orlando A. Purba; Indra Gunawan
Jurnal Inovasi Artificial Intelligence & Komputasional Nusantara Vol. 2 No. 1 (2025): Volume 2 No 1 Tahun 2025
Publisher : PT Siantar Codes Academy Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.260396/bad06b77

Abstract

Penelitian ini menganalisis keamanan sistem operasi Android terhadap serangan phishing yang menargetkan aplikasi e-wallet. Dengan meningkatnya penggunaan e-wallet sebagai metode pembayaran digital, ancaman phishing yang mengeksploitasi kelemahan pengguna dan sistem aplikasi terus berkembang. Penelitian ini menggunakan pendekatan kualitatif melalui tinjauan literatur, eksperimen keamanan, dan survei pengguna untuk mengidentifikasi kerentanan Android serta mengevaluasi efektivitas mekanisme keamanan. Hasil penelitian menunjukkan bahwa meskipun Android secara berkala memperbarui keamanannya, serangan phishing masih berhasil melalui rekayasa sosial dan penyalahgunaan izin aplikasi. Survei juga mengungkapkan bahwa kesadaran pengguna terhadap ancaman phishing masih rendah, sehingga meningkatkan risiko serangan. Rekomendasi diberikan kepada pengembang untuk memperkuat keamanan aplikasi dan meningkatkan edukasi pengguna tentang keamanan, termasuk penerapan autentikasi dua faktor dan kewaspadaan terhadap phishing. Penelitian ini diharapkan dapat membantu memitigasi risiko serangan phishing pada ekosistem e-wallet Android.