Claim Missing Document
Check
Articles

Found 2 Documents
Search

Enhancing photovoltaic parameters based on modified puma optimizer Aribowo, Widi; Abualigah, Laith; Oliva, Diego; Elsayed Abd Elaziz, Mohamed; Soleimanian Gharehchopogh, Farhad; A. Shehadeh, Hisham; Sabo, Aliyu; Prapanca, Aditya
Bulletin of Electrical Engineering and Informatics Vol 14, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i3.8977

Abstract

This article presents a photovoltaic (PV) optimization approach using the puma optimizer (PO) approach, which has been enhanced by utilizing Lévy flight optimization. The name of this approach is modified puma optimizer (MPO). PV generation systems are essential for sustainable solar energy utilization. It is an innovation and clean energy. There is an urgent demand for suitable and reliable simulation and optimization techniques for PV systems. This will result in increased efficiency. Algorithms with a high degree of reliability are needed to ensure optimal PV parameters. This study was conducted with MATLAB software. This article introduces the original PO method as a means to evaluate the performance of the MPO approach. The root mean square error (RMSE) function serves as a benchmark. Based on the simulation findings, the MPO approach shows superior RMSE compared to the PO method, specifically at a value of 0.0026%.
Frilled Lizard Optimization to optimize parameters Proportional Integral Derivative of DC Motor aribowo, widi; Abualigah, Laith; Oliva, Diego; Mzili, Toufik; Sabo, Aliyu; A. Shehadeh, Hisham
Vokasi Unesa Bulletin of Engineering, Technology and Applied Science Vol. 1 No. 1 (2024)
Publisher : Universitas Negeri Surabaya or The State University of Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/vubeta.v1i1.33973

Abstract

This paper presents a Proportional-Integral-Derivative (PID) parameter optimization method for direct current (dc) motors. The method utilizes a metaheuristic technique known as Frilled Lizard Optimization (FLO), which is inspired by natural processes. FLO draws inspiration from the lizard's hunting method of employing a sit-and-wait approach with great patience. The method is divided into two distinct phases: the exploration phase, which simulates a swift predator attack by a lizard, and the exploitation phase, which imitates the lizard's return to the treetop after feeding. This study confirms the effectiveness of FLO by conducting performance tests on the CEC2017 benchmark function and a DC motor. Through the simulations conducted on the CEC2017 benchmark function, it has been determined that FLO has superior exploration and exploitation capabilities. When testing a DC motor, it was discovered that the PID-FLO approach is effective in reducing overshoot and achieving optimal performance