Nuraini Kusuma, Aisha
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

PENILAIAN KOMPARATIF METODE KLASIFIKASI NEURAL NETWORK DAN RANDOM FOREST UNTUK KNOWLEDGE DISCOVERY PADA PENYAKIT DIABETES Aqil Zidane, Muhammad; Naufaldihanif, Rihan; Nuraini Kusuma, Aisha; Hanggara, Bryan; Clark Peter Wijaya, Adley; Ditha Tania, Ken; Kurnia Sari, Winda
JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 9 No. 3 (2025): JATI Vol. 9 No. 3
Publisher : Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jati.v9i3.13828

Abstract

Penelitian ini membahas penerapan data mining dalam prediksi diabetes, yang menjadi isu penting dalam bidang kesehatan dan teknologi informasi. Permasalahan utama yang diangkat adalah tingginya angka penderita diabetes yang sering terlambat terdiagnosis, yang berdampak pada meningkatnya risiko komplikasi serius dan biaya perawatan yang tinggi. Oleh karena itu, penelitian ini bertujuan untuk mengembangkan model prediksi diabetes yang lebih akurat menggunakan teknik data mining. Metode yang digunakan dalam penelitian ini adalah pendekatan kuantitatif dengan teknik pengumpulan data melalui analisis dataset diabetes menggunakan algoritma klasifikasi seperti Random Forest, dan Neural Network. Hasil penelitian menunjukkan bahwa algoritma Random Forest memiliki tingkat akurasi tertinggi sebesar 96,88% dibandingkan metode Neural Network dengan akurasi sebesar 89,23%, yang mengindikasikan bahwa metode Random Forest ini efektif dalam mendeteksi potensi pre-diabetes lebih dini. Kesimpulan dari penelitian ini menegaskan bahwa pemanfaatan data mining dapat meningkatkan akurasi prediksi pre-diabetes serta memberikan rekomendasi bagi tenaga medis dalam pengambilan keputusan diagnostik.