Wibowo, Muhammad Bagas Satrio
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Identifying Academic Excellence: Fuzzy Subtractive Clustering of Student Learning Outcomes Wibowo, Muhammad Bagas Satrio; Hindrayani, Kartika Maulida; Trimono, Trimono
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 3 (2025): JUTIF Volume 6, Number 3, Juni 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.3.4614

Abstract

Education forms a vital foundation for a nation's future. In this digital era, while the use of Information and Communication Technology (ICT) in education is increasing, it brings increasingly complex challenges in education data management and analysis. The growing number of students each year results in a large volume of data, which would be difficult to manage if still relying on manual methods. Manual approaches are inefficient, time-consuming, prone to inconsistencies and human error, especially when identifying outstanding students in large and complex data. This research aims to implement a clustering system to group outstanding students at XYZ elementary school using the Fuzzy Subtractive Clustering (FSC) method. FSC was chosen for its ability to identify data groups based on the density of data points. FSC involves several important parameters, including radius, squash factor, acceptance ratio, and rejection ratio. Added variabel of social and spiritual values aims to enhance grouping quality by offering a broader perspective on students' character, attitudes, and social interactions. Parameter exploration shows an increase in the silhouette score from 0.20–0.45 to 0.45-0.57 and variable addition spiritual and social values, which indicates clearer cluster separation and provides better insights. The best parameters results were achieved with radius 0.3, accept ratio 0.5, reject ratio 0.04, and squash factor 1.25, resulting in a Silhouette Score of 0.57 and forming 5 student groups. Cluster results can guide special mentoring for students with low academic, spiritual, and social values, and support personalized learning programs based on each cluster’s characteristics.