Nurul'aini, Arvina Rizqi
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Comparative Analysis of Hybrid Intelligent Algorithms for Microsleep Detection and Prevention Nurul'aini, Arvina Rizqi; Aprilianto, Rizky Ajie; Pribadi, Feddy Setio
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 3 (2025): JUTIF Volume 6, Number 3, Juni 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.3.4625

Abstract

Microsleep is a critical factor contributing to traffic accidents, posing significant risks to road safety. Research by the AAA Foundation for Traffic Safety found that 328,000 sleep-related driving accidents happen annually in the United States, underscoring the widespread and dangerous nature of drowsy driving. These incidents often occur without warning, making them especially hazardous and difficult to prevent through conventional means alone. This research aims to improve the accuracy of microsleep detection by developing a hybrid intelligent algorithms. It compares three intelligent algorithms: Fuzzy Logic (FL), representing scheme A; Fuzzy Logic combined with Artificial Neural Networks (FL-ANN), representing scheme B; and a combination of Fuzzy Logic, ANN, and Decision Trees (FL-ANN-DT), representing scheme C. These methods were evaluated using performance metrics such as MSE, MAE, RMSE, R², and response time. The results indicate that Scheme C (FL-ANN-DT) significantly outperforms the other approaches, achieving an MSE of 5.3617e-32, MAE of 4.3823e-17, R² of 1.0, and an RMSE close to zero, demonstrating near-perfect accuracy. Compared to previous models, this hybrid approach enhances prediction precision while maintaining real-time feasibility. The findings highlight the potential of FL-ANN-DT as an advanced microsleep detection system, contributing to improved road safety and real-time monitoring applications. This system can serve as a proactive safety layer in driver assistance technologies, reducing the risk of fatigue-related accidents and potentially saving lives.