Claim Missing Document
Check
Articles

Found 16 Documents
Search

Design and Implementation of Z-Source Inverter by Simple Boost Control Technique for Laboratory Scale Micro-Hydro Power Plant Application Ariefianto, Rizki Mendung; Aprilianto, Rizky Ajie; Suryoatmojo, Heri; Suwito, Suwito
Jurnal Teknik Elektro Vol 13, No 2 (2021): Jurnal Teknik Elektro
Publisher : Jurusan Teknik Elektro, Fakultas Teknik, Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jte.v13i2.31884

Abstract

In a power plant such as micro-hydropower (MHP), an induction generator (IG) is usually employed to produce electrical power. Therefore, an inverter is needed to deliver it with high efficiency. Z-source inverter (ZSI) has been introduced as a topology with many advantages over conventional inverters. This research aims to investigate the performance of ZSI based simple boost control (SBC) in laboratory-scale MHP systems using a rewinding induction generator. This research has been conducted both from simulations and experiments. Based on the result, the waveform characteristic and value of ZSI are close to the desired design. A shoot-through duty ratio of 17% can reach 60 Vrms output voltage, and this condition has a conversion ratio of about 2.05 times. Also, SBC can significantly reduce the Total Harmonic Distortion (THD). ZSI efficiency has a value of 84.78% at 50% of rating load 100 W and an average value of 80%. Compared to the previous study, the proposed design has more economical with the same component for the higher rating power. Moreover, it has a smoother and entire output waveform of the voltage.
Tren Algoritma InC, PID dan FLC untuk MPPT Pada Sistem Fotovoltaik: Sistematik Review Ananda, Briska Putra; Faqih, Faiq Mananul; Alkindi, Muhammad Faizal; Pribadi, Feddy Setio; Aprilianto, Rizky Ajie
Jurnal Energi Baru dan Terbarukan Vol 5, No 2 (2024): Juli 2024
Publisher : Program Studi Magister Energi, Sekolah Pascasarjana, Universitas Diponegoro, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jebt.2024.23089

Abstract

Terkadang ekstraksi daya pada penggunaan sistem fotovoltaik (PV) kurang maksimal, perubahan radiasi matahari dan temperatur lingkungan menjadi salah satu penyebabnya. MPPT adalah metode untuk memaksimalkan ekstraksi daya dari PV. Beberapa penggunaan algoritma kontrol untuk MPPT pada sistem PV diusulkan. Tujuan penelitian ini adalah untuk mengetahui seberapa efisien metode algoritma yang digunakan untuk MPPT. Kelebihan dari algoritma yang diusulkan juga dibahas. Penelitian ini melakukan tinjauan dari 15 artikel yang diambil dari sumber database Scopus dengan rentang tahun 2020 hingga 2024. Hasilnya menunjukkan bahwa kontroler berbasis PID paling banyak digunakan untuk MPPT. Penggunaan metode kombinasi hingga integrasi Neural Network (NN) menghasilkan nilai efisiensi yang tinggi dibandingkan dengan metode konvensional, tetapi memerlukan komputasi dan resource yang banyak. Systematic Literature Review (SLR) ini bisa menjadi pedoman untuk peneliti dalam mengembangkan algoritma untuk MPPT pada sistem PV di masa mendatang.
Pengembangan Intelligent Electrocardiograph Portable untuk Pemantauan Detak Jantung: Systematic Literature Review Hardi, Septian Akbar Noor Wahyu; Aviando, Rizqi; Pribadi, Feddy Setio; Aprilianto, Rizky Ajie
CESS (Journal of Computer Engineering, System and Science) Vol 9, No 2 (2024): July 2024
Publisher : Universitas Negeri Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24114/cess.v9i2.59003

Abstract

Kesehatan jantung menjadi faktor penting yang harus diperhatikan, terutama pada orang yang melakukan aktivitas fisik tinggi, seperti atlet. Untuk meningkatkan identifikasi dini penyakit jantung dan mengurangi bahaya kematian mendadak, perangkat elektrokardiogram (EKG) cerdas portabel telah banyak diusulkan untuk mendeteksi aktivitas jantung secara real-time. Penelitian ini bertujuan untuk memberikan informasi tentang klasifikasi sinyal jantung dengan memanfaatkan Filter Infinite Impulse Response (IIR) untuk menghilangkan noise sinyal dan Random Forest yang berguna untuk mengkategorikan masalah jantung secara cepat dan akurat. Referensi yang dirujuk, dipetakan berdasarkan sistematic literature review menggunakan metode preferred reporting items for systematic reviews and meta-analyses (PRISMA). Berdasarkan hasil ulasan yang telah dilakukan, terbukti EKG portable dengan filter IIR terbukti mampu membersihkan sinyal yang didukung dengan algoritma Random Forest untuk klasifikasi sehingga menghasilkan tingkat akurasi yang baik.
Sistem Diagnosis Penyakit Kerbau menggunakan Algoritma Forward Chaining DZAKWAN, MUHAMAD AKMAL; SUBIYANTO, SUBIYANTO; APRILIANTO, RIZKY AJIE; SYAH, MARIO NORMAN
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 12, No 1: Published January 2024
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v12i1.231

Abstract

ABSTRAKKetergantungan peternak pada pakar atau dokter hewan karena terbatasnya pengetahuan dalam mengindentifikasi penyakit kerbau merupakan opsi yang sulit dan mahal. Dalam mengatasi hal tersebut, artikel ini menyajikan pengembangan sistem pakar diagnosis penyakit kerbau. Sistem ini diimplementasikan dalam bentuk web serta dirancang dengan mengumpulkan data tentang 17 jenis penyakit kerbau dan 49 gejala yang berkaitan. Proses diagnosis menggunakan kombinasi algoritma Forward Chaining dan Certainty Factor, yang memungkinkan sistem untuk mencocokkan gejala yang diamati dengan database penyakit kerbau menghasilkan diagnosis yang akurat. Hasil Pengujian sistem menunjukkan tingkat akurasi mencapai 100% dalam 15 kali pengujian berturut-turut. Hasil pengujian juga divalidasi oleh pakar spesialis kerbau. Kesimpulannya, sistem ini layak digunakan oleh peternak kerbau untuk mendiagnosis penyakit kerbau secara dini.Kata kunci: sistem pakar, penyakit pada kerbau, gejala, forward chaining, certainty factor ABSTRACTFarmers' reliance on experts or veterinarians due to limited knowledge in identifying buffalo diseases is a difficult and expensive option. To address the problem, this paper presents the development of an expert system for buffalo disease diagnosis. The system is implemented on the web and designed by collecting data on 17 buffalo disease types and 49 associated symptoms. The diagnosis process uses a combination of Forward Chaining and Certainty Factor algorithms, which allows the system to match observed symptoms with the buffalo disease database resulting in an accurate diagnosis. System testing results showed an accuracy rate of 100% in 15 consecutive tests. Results were also validated by buffalo specialist experts. In conclusion, the system is feasible to be used by buffalo farmers to diagnose buffalo diseases early.Keywords: expert system, buffalo diseases, symptoms, forward chaining, certainty factor
Tinjauan Sistematis Dampak Teknologi Kota Pintar terhadap Kualitas Hidup dan Lingkungan Adiastoro, Mahendra; Ati Zuhrotal Afifah, Ning Imas; Arundaya, Adil; Pribadi, Feddy Setio; Aprilianto, Rizky Ajie
ELECTRON Jurnal Ilmiah Teknik Elektro Vol 5 No 2: Jurnal Electron, November 2024
Publisher : Jurusan Teknik Elektro Fakultas Teknik Universitas Bangka Belitung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33019/electron.v5i2.210

Abstract

This study conducted a Systematic Literature Review (SLR) to review the impact of smart city technologies on quality of life and environmental sustainability. Using the PRISMA method, this review systematically identified, screened, and selected relevant studies from reputable databases, focusing on recent publications from 2019 to 2024. The research addresses various aspects of smart city initiatives, including benefits, challenges, real-world applications, potential risks, and strategies to overcome implementation barriers. The results show that smart city technologies contribute positively to urban resource management, energy efficiency, and waste reduction, thereby improving quality of life and promoting sustainable urban development. However, data privacy, cybersecurity, and high implementation costs remain significant obstacles. Community engagement and customized approaches are identified as critical factors in the successful adoption of smart city initiatives. This study provides insights into strategies to optimize the benefits of smart city projects, offering a basis for further research and practical guidance for stakeholders in urban planning.
Systematic Literature Review (SLR): Dampak Pemanfaatan Artificial Intelligence untuk Meningkatkan Cyber Security Pongoh, Arthur Gregorius; Fahreza, Rizqy Achmad; Al Kindi, Bilal; Pribadi, Feddy Setio; Aprilianto, Rizky Ajie
Cyber Security dan Forensik Digital Vol. 7 No. 1 (2024): Edisi Bulan Mei Tahun 2024
Publisher : Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14421/csecurity.2024.7.1.4486

Abstract

Artificial Intelligence (AI) adalah tambahan kecerdasan pada sistem yang dapat dikelola secara ilmiah dan berkembang di dunia teknologi untuk melayani berbagai aplikasi, termasuk keamanan siber. Kecerdasan buatan memainkan peran penting dalam keamanan siber, memungkinkan deteksi dini ancaman keamanan siber, analisis terperinci terhadap serangan yang muncul, dan respons yang cepat dan akurat. Penelitian ini menggunakan teknik tinjauan literatur sistematis (SLR) untuk menganalisis peran kecerdasan buatan dalam keamanan siber. Pengumpulan data dilakukan dengan mendokumentasikan semua makalah yang memuat temuan penelitian serupa dengan laporan penelitian ini. Makalah yang digunakan dalam penelitian ini adalah 20 makalah dari database ScienceDirect dan Google Scholar. Kecerdasan buatan telah menjadi elemen kunci dalam mendukung upaya untuk melindungi sistem informasi dan jaringan dari ancaman siber yang semakin kompleks. Dengan kemampuannya untuk belajar dari pola-pola data, AI memungkinkan untuk mendeteksi ancaman yang belum pernah terjadi sebelumnya dan memberikan respons secara real-time. Melalui tinjauan literatur sistematis ini, kami menyelidiki berbagai pendekatan dan teknik AI yang telah diterapkan dalam konteks keamanan siber, termasuk penggunaan jaringan syaraf tiruan, algoritma pembelajaran mesin, dan analisis teks. Hasil analisis kami menyoroti bahwa AI telah berhasil digunakan dalam mendeteksi serangan siber, menganalisis pola-pola perilaku yang mencurigakan, dan mengoptimalkan respons keamanan. Implikasi praktis dari penelitian ini adalah pentingnya terus mengembangkan dan mengadopsi solusi AI yang dapat memperkuat pertahanan siber dalam menghadapi ancaman yang terus berkembang.Kata Kunci: Artificial Intelligence, Cyber Security, Systematic Literature Review, Aplikasi Artificial Intelligence -------------------------------------------- Artificial Intelligence (AI) is an augmentation of intelligence within systems that can be managed scientifically and is evolving in the world of technology to serve various applications, including cyber security. Artificial intelligence plays a crucial role in cyber security, enabling early detection of cyber security threats, detailed analysis of emerging attacks, and swift and accurate responses. This research utilizes the systematic literature review (SLR) technique to analyze the role of artificial intelligence in cyber security. Data collection was conducted by documenting all papers containing research findings similar to this research report. The papers used in this study comprise 20 papers from the ScienceDirect and Google Scholar databases.Artificial intelligence has become a key element in supporting efforts to protect information systems and networks from increasingly complex cyber threats. With its ability to learn from data patterns, AI enables the detection of previously unseen threats and provides real-time responses. Through this systematic literature review, we investigated various AI approaches and techniques that have been applied in the context of cyber security, including the use of artificial neural networks, machine learning algorithms, and text analysis. Our analysis highlights that AI has been successfully utilized in detecting cyber attacks, analyzing suspicious behavioral patterns, and optimizing security responses. The practical implications of this research underscore the importance of continually developing and adopting AI solutions that can strengthen cyber defense against evolving threats. Keywords: Artificial Intelligence, Cyber Security, Systematic Literature Review, Application of Artificial Intelligenc
Comparison of the Use of YOLOv11 Variations in the Empty Parking Spaces Detection System Waskito, Deswal; Syarifah, Dian Farah; Aprilianto, Rizky Ajie
Sainteknol : Jurnal Sains dan Teknologi Vol. 23 No. 1 (2025): June 2025
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sainteknol.v23i1.20014

Abstract

The development of a smart parking system using the You Only Look Once (YOLO) model has improved the efficiency of parking management by providing real-time vehicle detection and availability of parking spaces. This study compared three variations of YOLOv11-Nano (YOLOv11n), YOLOv11-Small (YOLOv11s), and YOLOv11-Medium (YOLOv11m) to determine the most effective model in detecting empty parking spaces. The experiment was carried out using a dataset consisting of 5725 images of parking areas with various conditions such as angles, lighting, and distance. In addition, the researcher also used a 6-second parking lot timelapse video for the test material of the model that had been trained. The results show that each variation of YOLOv11 has its own advantages in terms of accuracy, speed, and computing efficiency. YOLOv11n offers faster detection with lower resource consumption, while YOLOv11m provides higher accuracy with longer processing times. The findings of this study aim to help select the optimal YOLOv11 variant for smart parking implementation, thereby improving efficiency and accuracy in real-world applications.
Cron Job Implementation for Automated Data Processing and Transfer in Cloud Infrastructure Wibowo, Apriansyah; Fathimah, Aisya; Waskito, Deswal; Aprilianto, Rizky Ajie
Sainteknol : Jurnal Sains dan Teknologi Vol. 23 No. 1 (2025): June 2025
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sainteknol.v23i1.22649

Abstract

The rapid growth of cloud computing has necessitated efficient and automated solutions for data management in cloud infrastructure. Manual data processing and transfer methods are prone to delays, errors, and inefficiencies, particularly in real-time applications. This study proposes a systematic approach to automate data processing and transfer using cron job, PHP script logic, and Cloud Panel integration. A MySQL database was designed with two tables: data_now for real-time data and data_one_hour for scheduled transfers at one-hour intervals. Php script were developed to automate data transfer logic, while cron job were configured on the Cloud Panel to execute these scripts at predefined intervals. The system was tested in a cloud environment, demonstrating error-free, hourly data transfers with significant improvements in efficiency, accuracy, and timeliness. Results showed that the automated system reduced manual workload, ensured real-time data consistency, and optimized resource utilization. This study provides a scalable and reliable framework for automating data workflows in cloud-based systems, offering practical solutions for industries such as healthcare, finance, and IoT. The findings contribute to the field of cloud automation by presenting a robust approach that can be readily implemented across various organizational infrastructures.
Techno-Economic Feasibility Study of Renewable Energy Power Generation: A Case Study in Sumba Jaya Area, East Nusa Tenggara Province, Indonesia Aprilianto, Rizky Ajie; Syah, Mario Norman; Anita, Nur
Techné : Jurnal Ilmiah Elektroteknika Vol. 24 No. 1 (2025)
Publisher : Fakultas Teknik Elektronika dan Komputer Universitas Kristen Satya Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31358/techne.v24i1.496

Abstract

The Sumba Island electricity is divided into two central systems, the Waingapu and Waikabubak. The load growth of the Waikabubak system, which is in the Sumba Jaya area, is predicted to be higher than that of the Waingapu system. The existing power generation systems in this area consist of solar PV system (PLTS) Bilacenge along with vanadium redox battery (VRB), micro hydro power plant (PLTMH) Lokomboro and Umbuwango, the diesel power generation (PLTD) Waikabubak and Waitabula (Baru Laratama). The existing configuration of these systems produces renewable energy penetration below 45%. Hence, this condition shows that renewable energy exploration has yet to be carried out optimally, even though this area has an average potential for solar irradiation and wind speed reaching 5.84 kWh/day and 5.29 m/s, respectively. This research proposes an optimization design for developing the electricity system in the Sumba Jaya area, including Sumba Barat and Sumba Barat Daya Regency, East Nusa Tenggara Province. The proposed design searches for the optimal capacity of the existing system by adding renewable energy power generation in the form of wind turbine generation (PLTB) in Wanokaka with a capacity of 3,000 kW. The modelling was conducted using Hybrid Optimization of Multiple Energy Resources (HOMER) software to assess the feasibility of the proposed system. As a result, the payback period of the proposed system is achieved around four years, with the net present cost (NPC) and cost of energy (COE) lower than the existing system. In addition, the level of CO2 emissions was reduced, with the increased renewable energy penetration rate at around 96.6%.
Comparative Analysis of Hybrid Intelligent Algorithms for Microsleep Detection and Prevention Nurul'aini, Arvina Rizqi; Aprilianto, Rizky Ajie; Pribadi, Feddy Setio
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 3 (2025): JUTIF Volume 6, Number 3, Juni 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.3.4625

Abstract

Microsleep is a critical factor contributing to traffic accidents, posing significant risks to road safety. Research by the AAA Foundation for Traffic Safety found that 328,000 sleep-related driving accidents happen annually in the United States, underscoring the widespread and dangerous nature of drowsy driving. These incidents often occur without warning, making them especially hazardous and difficult to prevent through conventional means alone. This research aims to improve the accuracy of microsleep detection by developing a hybrid intelligent algorithms. It compares three intelligent algorithms: Fuzzy Logic (FL), representing scheme A; Fuzzy Logic combined with Artificial Neural Networks (FL-ANN), representing scheme B; and a combination of Fuzzy Logic, ANN, and Decision Trees (FL-ANN-DT), representing scheme C. These methods were evaluated using performance metrics such as MSE, MAE, RMSE, R², and response time. The results indicate that Scheme C (FL-ANN-DT) significantly outperforms the other approaches, achieving an MSE of 5.3617e-32, MAE of 4.3823e-17, R² of 1.0, and an RMSE close to zero, demonstrating near-perfect accuracy. Compared to previous models, this hybrid approach enhances prediction precision while maintaining real-time feasibility. The findings highlight the potential of FL-ANN-DT as an advanced microsleep detection system, contributing to improved road safety and real-time monitoring applications. This system can serve as a proactive safety layer in driver assistance technologies, reducing the risk of fatigue-related accidents and potentially saving lives.