Kamaruddin, Azlina
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimization Artificial Neural Network (ANN) Models with Adam Optimizer to Improve Customer Satisfaction Business Banking Prediction Ifriza, Yahya Nur; Mandaya, Yusuf Wisnu; Sanusi, Ratna Nur Mustika; Febriyanto, Hendra; Jabbar, Abdul; Kamaruddin, Azlina
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 3 (2025): JUTIF Volume 6, Number 3, Juni 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.3.4776

Abstract

Customer satisfaction prediction is critical for business banking to retain clients and optimize services, yet existing models struggle with imbalanced data and suboptimal convergence. Traditional approaches lack adaptive learning mechanisms, limiting accuracy in real-world applications. This study developed an optimized Artificial Neural Network (ANN) model using the Adam algorithm to improve prediction accuracy for banking customer satisfaction. We trained an ANN on the Santander Customer Satisfaction Dataset (76,019 entries, 371 features) with Adam optimization. Preprocessing included normalization, removal of quasi-constant features, and an 80-20 train-test split. Adam’s adaptive learning rates and momentum were leveraged to address gradient instability. The model achieved 95.82% accuracy, 99.99% precision, 95.83% recall, a 97.87% F1-score, and 0.82 AUC, outperforming traditional optimizers like SGD. Training loss reduced by 30% with faster convergence. This work demonstrates Adam’s efficacy in handling imbalanced banking data, providing a scalable framework for customer analytics. The results advance computer science applications in fintech by integrating adaptive optimization with deep learning for high-stakes decision-making. This research contributes to the growing body of knowledge in machine learning applications for business analytics and provides a valuable framework for improving customer satisfaction prediction models in various industries and the advancement of deep learning applications in business intelligence, particularly in banking service quality prediction.
Optimization CatBoost using GridSearchCV for Sentiment Analysis Customer Reviews in Digital Transportation Industry Ifriza, Yahya Nur; Sanusi, Ratna Nur Mustika; Febriyanto, Hendra; Kamaruddin, Azlina
TIERS Information Technology Journal Vol. 6 No. 2 (2025)
Publisher : Universitas Pendidikan Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.38043/tiers.v6i2.7201

Abstract

The rapid expansion of ride-hailing services has generated a massive volume of user feedback, making automated sentiment analysis essential for understanding customer satisfaction. This study aims to classify public sentiment towards the Uber application into positive, neutral, and negative categories using the CatBoost algorithm, a gradient boosting method prioritized for its Ordered Boosting mechanism, which effectively prevents overfitting and enhances the model's generalization capabilities. Despite the use of TF-IDF for numerical text representation, CatBoost is selected for its superior performance on heterogeneous datasets compared to other boosting frameworks like XGBoost and LightGBM. The dataset comprises customer reviews collected 12.000 from the Google Play Store between January and March 2024 using web scraping techniques upload in Kaggle. The data underwent rigorous preprocessing, including lemmatization and TF-IDF vectorization, to structure the textual features, to maximize model performance, hyperparameter optimization was conducted using GridSearchCV. The experimental results demonstrate that the optimization process successfully improved the model's generalization capabilities, raising the Accuracy from 0.907 to 0.910 and the F1-Score from 0.893 to 0.897. Most significantly, the AUC score increased from 0.949 to 0.957, indicating a superior ability to distinguish between sentiment classes. However, while the model exhibited high precision in identifying positive and negative polarities, analysis of the confusion matrix revealed limitations in correctly predicting the neutral class, suggesting challenges related to class imbalance. These findings confirm that an optimized CatBoost model is a robust tool for sentiment classification, though future work is recommended to address minority class detection.