Utama, Muhammad Surya Alif
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Classification of Helmet and Vest Usage for Occupational Safety Monitoring using Backpropagation Neural NetworkClassification of Helmet and Vest Usage for Occupational Safety Monitoring using Backpropagation Neural Network Arifin, Nurhikma; Insani, Chairi Nur; Milasari, Milasari; Rusman, Juprianus; Upa, Samrius; Utama, Muhammad Surya Alif
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 3 (2025): JUTIF Volume 6, Number 3, Juni 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.3.4781

Abstract

Occupational Safety and Health (OSH) is a critical aspect in high-risk work environments, where the consistent use of Personal Protective Equipment (PPE) plays a vital role in preventing workplace accidents. However, non-compliance with PPE regulations remains a significant issue, contributing to a high number of work-related injuries in Indonesia. This study proposes an automated detection and classification system for PPE usage, specifically helmets and vests, using the Backpropagation algorithm in artificial neural networks. A total of 100 images were utilized, equally divided between complete and incomplete PPE usage. The dataset was split into 60% training and 40% testing. Image segmentation was performed using HSV color space conversion and thresholding, followed by RGB color feature extraction. The Backpropagation algorithm was then employed for classification. Experimental results show an average accuracy of 90%, with precision, recall, and F-measure all reaching 0.9. Despite some misclassifications due to color similarity between helmets and head coverings, the model demonstrated robust performance with relatively low computational requirements. This study contributes to the field of computer vision and intelligent safety systems by demonstrating the practical effectiveness of lightweight ANN architectures for PPE detection in real-time industrial scenarios, thereby highlighting the potential of backpropagation as an adaptive and practical alternative to more complex deep learning approaches for real-time PPE detection in occupational safety monitoring systems.
Corn Leaf Diseases Classification Using CNN with GLCM, HSV, and L*a*b* Features Johari, Putri Fausyah; Arifin, Nurhikma; Muzaki, Muzaki; Utama, Muhammad Surya Alif
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 2 (2025): JUTIF Volume 6, Number 2, April 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.2.4345

Abstract

Corn leaf diseases can damage plants and reduce crop yields, thus affecting the quality and quantity of corn production. This study aims to classify corn leaf diseases using the Convolutional Neural Network (CNN) method with different color features, namely Gray Level Co-Occurrence Matrix (GLCM), HSV, and L*a*b*. The dataset consists of 1,739 corn leaf images, which are divided into four disease classes: Blight, Common Rust, Gray Spot, and Healthy. The data is split into training and testing sets using an 80:20 ratio. Two testing scenarios were conducted: individual feature evaluation and feature combination. The results show that in the first scenario, the L*a*b* feature provides the best accuracy at 91.75%, followed by the HSV feature with an accuracy of 90.29%, and GLCM with an accuracy of 78.40%. In the second scenario, the combination of HSV and L*a*b* features results in the highest accuracy of 92.48%, indicating that combining color and brightness information can improve the model's performance. The combination of GLCM and L*a*b* features results in an accuracy of 91.75%, while the combination of GLCM and HSV results in an accuracy of 90.29%. These findings demonstrate that integrating HSV and L*a*b features enhances CNN performance in corn leaf disease classification, outperforming individual feature- based approaches, thus contributing to more effective AI-based agricultural disease diagnosis.