Claim Missing Document
Check
Articles

Found 2 Documents
Search

A Hybrid CNN-Transformer Model with Quantum-Inspired Fourier Transform for Accurate Skin Disease Classification S, Aasha Nandhini; Manoj, R. Karthick; Batumalay, M.
Journal of Applied Data Sciences Vol 6, No 3: September 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i3.782

Abstract

Skin disease classification is a complex task that requires robust feature extraction, efficient classification, and interpretability. Artificial intelligence-based technologies offer effective solutions for developing a framework for skin disease classification while ensuring explainability for healthcare professionals. This study proposes a novel Hybrid Transformer model comprising of Convolutional Neural Network (CNN) architecture infused with a Quantum-Inspired Fourier Transform (QIFT) to enhance classification accuracy. QIFT is incorporated to emphasize frequency-domain information alongside the spatial features captured by CNNs, potentially improving feature representation and model generalization. For demonstration, a dataset containing four different classes of dermatological images is used. Data augmentation techniques and adaptive learning rate scheduling are employed to optimize the dataset. A weighted cross-entropy loss function is used to address class imbalances in the dataset. In this research, explainability is implemented using a standard attribution technique like Integrated Gradients providing insights into model decision-making, and enhancing trust in medical applications. Performance evaluation involves validating the proposed framework using metrics such as confusion matrix analysis, classification reports, and training-validation curves. Experimental results demonstrate a high classification accuracy of 92.5% across skin disease categories. The findings indicate that integrating QIFT and CNN-based feature extraction with transformer-driven attention mechanisms enhances skin disease classification performance while ensuring interpretability as process innovation.
Optimized AI-IoT Solution for Real-Time Pest Identification in Smart Agriculture S, Aasha Nandhini; Manoj, R. Karthick; Batumalay, M.
Journal of Applied Data Sciences Vol 6, No 4: December 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i4.810

Abstract

Pest detection and identification play a crucial role in reducing the damage caused by pest, insect and diseases.  Timely detection and response are essential to increase the quality and quantity of crop production. Efficient pest management strategies are important for achieving optimal crop quality and promoting sustainable agricultural practices. This research proposes a framework that can automatically detect pests and offer timely solutions to farmers. The proposed approach integrates intelligent computing methods with connected device networks to identify and classify pests in real time with high precision. The methodology focuses on efficiently segmenting the pest from the captured leaf image using a novel region growing based segmentation algorithm. The threshold for region growing based segmentation algorithm is based on the adaptive local region entropy which contributes to the efficient segmentation. Stacked Ensemble Classifier (SEC) is used for the classification. The metrics used for evaluating the performance of the pest detection framework are accuracy, Area Under the Receiver Operating Characteristic Curve, F1-Score and Mean Average Precision (mAP). The results indicate that the proposed SEC with region growing based segmentation framework achieves 98 % of classification accuracy and mAP of 0.96 proving that it is very effective in both classification and segmentation task. The comparative analysis further reveals that the SEC outperforms the existing machine learning models and ensemble learning models like majority voting and weighted average models for process innovation.