Claim Missing Document
Check
Articles

Found 2 Documents
Search

PERBANDINGAN PREDIKSI POLUSI UDARA MENGGUNAKAN LSTM DAN BILSTM Pratama, Andre; Sembiring, Asha; Nababan, Junerdi; Zarkasyi, Muhammad Imam; Rahayu, Novriza
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 8, No 3 (2025): August 2025
Publisher : Smart Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54314/jssr.v8i3.3596

Abstract

Abstract: Air pollution has become a serious problem in densely populated urban areas such as DKI Jakarta. To mitigate its negative impacts, an accurate air pollution prediction system is necessary. This study compares the performance of two deep learning models, Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory (BiLSTM), in predicting PM10 concentration using air quality data from DKI Jakarta between 2016 and 2019. The research process includes data collection and preprocessing, model training, and model evaluation. Both models were tested with various parameters such as the number of hidden neurons, dropout rate, epochs, and batch size. The results consistently show that BiLSTM outperforms LSTM, achieving lower Root Mean Square Error (RMSE) values across 54 testing scenarios. The best BiLSTM configuration, with 64 hidden neurons, 0.2 dropout rate, 50 epochs, and batch size 16, yielded an RMSE of 9.311401. Meanwhile, the best LSTM configuration, with 128 hidden neurons, 0.1 dropout rate, 100 epochs, and batch size 16, produced an RMSE of 9.330554. The advantage of BiLSTM lies in its ability to process data bidirectionally, making it more effective in capturing temporal patterns for air pollution prediction compared to LSTM. Keywords: air pollution prediction, pollutant, deep learning, LSTM, BiLSTM Abstrak: Pencemaran udara menjadi masalah serius di wilayah perkotaan padat seperti DKI Jakarta. Untuk mengurangi dampak negatifnya, diperlukan sistem prediksi polusi udara yang akurat. Penelitian ini membandingkan performa dua model deep learning, Long Short-Term Memory (LSTM) dan Bidirectional Long Short-Term Memory (BiLSTM), dalam memprediksi konsentrasi PM10 menggunakan data kualitas udara DKI Jakarta tahun 2016-2019. Proses penelitian mencakup pengumpulan dan praproses data, pelatihan model, serta evaluasi model. Kedua model diuji dengan berbagai parameter seperti jumlah hidden neuron, dropout rate, epoch, dan batch size. Hasil menunjukkan BiLSTM lebih unggul secara konsisten dengan nilai Root Mean Square Error (RMSE) lebih rendah melalui 54 skenario pengujian. Konfigurasi terbaik BiLSTM menggunakan 64 hidden neuron, dropout rate 0.2, 50 epoch, dan batch size 16 menghasilkan RMSE 9.311401. Sedangkan konfigurasi LSTM terbaik pada 128 hidden neuron, dropout rate 0.1, 100 epoch, dan batch size 16 menghasilkan RMSE 9.330554. Keunggulan BiLSTM terletak pada kemampuannya memproses data dua arah, sehingga lebih efektif dalam menangkap pola temporal untuk prediksi polusi udara dibandingkan LSTM.  Kata kunci: prediksi polusi udara, polutan, deep learning, LSTM, BiLSTM
Analisis Sentimen terhadap Terorisme pada Platform Twitter menggunakan Support Vector Machine Rahayu, Novriza; Indri Yani, Sylvia; Marwah, Marwah; Pratama, Andre
Jurnal Manajemen Informatika, Sistem Informasi dan Teknologi Komputer (JUMISTIK) Vol 4 No 1 (2025): Jurnal Manajemen Informatika, Sistem Informasi dan Teknologi Komputer (JUMISTIK)
Publisher : STMIK Amika Soppeng

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70247/jumistik.v4i1.152

Abstract

This research aims to classify public sentiment regarding terrorism issues using the Support Vector Machine (SVM) algorithm. This topic is important because text-based sentiment analysis plays a significant role in understanding public opinion on critical issues. Initial data in the form of Indonesian text was processed through preprocessing stages, translated into English, and labeled using VADER. Data imbalance was addressed using Random Over Sampling methods, while numerical data representation was obtained through feature extraction using TF-IDF. The SVM model was evaluated using confusion matrix with accuracy, precision, recall, and F1-score metrics. The results show that the model achieved 98.02% accuracy, 98.09% precision, 98.02% recall, and 98.01% f1-score, demonstrating excellent performance in classifying sentiment into negative, neutral, and positive categories. Some prediction errors were still found in the negative and positive categories. This research demonstrates that the combination of preprocessing methods, data balancing, and TF-IDF feature extraction effectively produces an accurate sentiment classification model. This research contributes significantly to the development of text-based sentiment analysis technology to support decision making. Keywords: Sentiment Analysis, Support Vector Machine, Terrorism, Twitter Penelitian ini bertujuan mengelompokkan sentimen masyarakat terkait isu terorisme menggunakan algoritma Support Vector Machine (SVM). Topik ini penting karena analisis sentimen berbasis teks berperan signifikan dalam memahami opini publik terhadap isu-isu kritis. Data awal berupa teks berbahasa Indonesia diproses melalui tahap preprocessing, diterjemahkan ke bahasa Inggris, dan dilabeli menggunakan VADER. Ketidakseimbangan data diatasi dengan metode Random Over Sampling, sementara representasi data numerik diperoleh melalui ekstraksi fitur TF-IDF. Model SVM dievaluasi menggunakan confusion matrix dengan metrik accuracy, precision, recall, dan f1-score. Hasilnya, model mencapai akurasi 98,02%, precision 98,09%, recall 98,02%, dan F1-score 98,01%, menunjukkan performa sangat baik dalam mengklasifikasikan sentimen ke dalam kategori negatif, netral, dan positif. Beberapa kesalahan prediksi masih ditemukan pada kategori negatif dan positif. Penelitian ini menunjukkan bahwa kombinasi metode preprocessing, penyeimbangan data, dan ekstraksi fitur TF-IDF efektif menghasilkan model klasifikasi sentimen yang akurat. Penelitian ini berkontribusi secara signifikan terhadap pengembangan teknologi analisis sentimen berbasis teks untuk mendukung pengambilan keputusan. Kata kunci: Analisis Sentimen, Support Vector Machine, Terorisme, Twitter