Claim Missing Document
Check
Articles

Found 3 Documents
Search

Optimasi Cluster Pada K-Means Clustering Dengan Teknik Reduksi Dimensi Dataset Menggunakan Gini Index Zarkasyi, Muhammad Imam; Mawengkang, Herman; Sitompul, Opim Salim
Building of Informatics, Technology and Science (BITS) Vol 4 No 3 (2022): December 2022
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v4i3.2458

Abstract

In K-Means Clustering, the number of attributes of a data can affect the number of iterations generated in the data grouping process. One of the solutions to overcome these problems is by using a reduction technique on the dimensions of the dataset. In this study, the authors apply the Gini Index to perform attribute reduction on the data set to reduce attributes that have no effect on the dataset before clustering with K-Means Clustering. The dataset used to be tested as a testing instrument in this research is Absenteeism at work obtained from the UCI Machine Learning Repository, with 20 attributes, 740 data records and 4 attribute classes. The results of the tests in this research indicate that the number of iterations obtained from the comparison of tests using the K-Means in a Conversional (Without Attribute Reduction) is obtained by the number of 9 iterations, while the K-Means with attribute reduction with the Gini Index obtains the number of iterations totaling 6 iterations. Clustering evaluation was calculated using Sum of Square Error (SSE). The SSE value in K-Means Clustering in a Conversional (Without Attribute Reduction) is 1391.613, while in K-Means Clustering with attribute reduction with a Gini Index, it is 440.912. From the results of the proposed method, it is able to reduce the percentage of errors and minimize the number of iterations in K-Means Clustering by reducing the dimensions of the dataset using the Gini Index
PERBANDINGAN PREDIKSI POLUSI UDARA MENGGUNAKAN LSTM DAN BILSTM Pratama, Andre; Sembiring, Asha; Nababan, Junerdi; Zarkasyi, Muhammad Imam; Rahayu, Novriza
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 8, No 3 (2025): August 2025
Publisher : Smart Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54314/jssr.v8i3.3596

Abstract

Abstract: Air pollution has become a serious problem in densely populated urban areas such as DKI Jakarta. To mitigate its negative impacts, an accurate air pollution prediction system is necessary. This study compares the performance of two deep learning models, Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory (BiLSTM), in predicting PM10 concentration using air quality data from DKI Jakarta between 2016 and 2019. The research process includes data collection and preprocessing, model training, and model evaluation. Both models were tested with various parameters such as the number of hidden neurons, dropout rate, epochs, and batch size. The results consistently show that BiLSTM outperforms LSTM, achieving lower Root Mean Square Error (RMSE) values across 54 testing scenarios. The best BiLSTM configuration, with 64 hidden neurons, 0.2 dropout rate, 50 epochs, and batch size 16, yielded an RMSE of 9.311401. Meanwhile, the best LSTM configuration, with 128 hidden neurons, 0.1 dropout rate, 100 epochs, and batch size 16, produced an RMSE of 9.330554. The advantage of BiLSTM lies in its ability to process data bidirectionally, making it more effective in capturing temporal patterns for air pollution prediction compared to LSTM. Keywords: air pollution prediction, pollutant, deep learning, LSTM, BiLSTM Abstrak: Pencemaran udara menjadi masalah serius di wilayah perkotaan padat seperti DKI Jakarta. Untuk mengurangi dampak negatifnya, diperlukan sistem prediksi polusi udara yang akurat. Penelitian ini membandingkan performa dua model deep learning, Long Short-Term Memory (LSTM) dan Bidirectional Long Short-Term Memory (BiLSTM), dalam memprediksi konsentrasi PM10 menggunakan data kualitas udara DKI Jakarta tahun 2016-2019. Proses penelitian mencakup pengumpulan dan praproses data, pelatihan model, serta evaluasi model. Kedua model diuji dengan berbagai parameter seperti jumlah hidden neuron, dropout rate, epoch, dan batch size. Hasil menunjukkan BiLSTM lebih unggul secara konsisten dengan nilai Root Mean Square Error (RMSE) lebih rendah melalui 54 skenario pengujian. Konfigurasi terbaik BiLSTM menggunakan 64 hidden neuron, dropout rate 0.2, 50 epoch, dan batch size 16 menghasilkan RMSE 9.311401. Sedangkan konfigurasi LSTM terbaik pada 128 hidden neuron, dropout rate 0.1, 100 epoch, dan batch size 16 menghasilkan RMSE 9.330554. Keunggulan BiLSTM terletak pada kemampuannya memproses data dua arah, sehingga lebih efektif dalam menangkap pola temporal untuk prediksi polusi udara dibandingkan LSTM.  Kata kunci: prediksi polusi udara, polutan, deep learning, LSTM, BiLSTM
ANALISIS MULTI OBJECTIVE OPTIMIZATION ON THE BASIS OF RATIO ANAYSIS (MOORA) DALAM MODEL REKOMENDASI EKSTRAKURIKULER SISWA Idaman, Akbar; Zarkasyi, Muhammad Imam; Aurlani, Febry; Arahman, Hamjah
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 8, No 4 (2025): November 2025
Publisher : Smart Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54314/jssr.v8i4.4665

Abstract

Abstract: This research applies the Multi Objective Optimization On the Basis of Ratio Analysis (MOORA) method to determine the appropriate extracurricular activity recommendations at XYZ School, aiming to facilitate data-driven decision-making in selecting extracurricular activities that align with students' interests and talents. The methodology includes data collection through observation and interviews, followed by the application of the MOORA method to process data on students' interests, talents, creativity, and potential involvement in extracurricular activities. The results show that the application of the MOORA method produces objective and systematic rankings of the available extracurricular activities based on the established criteria. The Scouting activity, with the highest value (Yi = 0.4821), was found to be the most suitable activity for students' profiles, followed by Arts and Paskibra. The MOORA method proves effective in providing more accurate and efficient extracurricular activity recommendations, addressing issues in previous subjective and ad-hoc decision-making processes. This study concludes that the application of MOORA can enhance the quality of decisions in selecting extracurricular activities, potentially enriching students' experiences and skill development. Keyword: MOORA; Extracurricular recommendations; Decision-making; Decision support system; Education. Abstrak: Penelitian ini mengaplikasikan metode Multi Objective Optimization On the Basis of Ratio Analysis (MOORA) untuk menentukan rekomendasi kegiatan ekstrakurikuler yang tepat di Sekolah XYZ, dengan tujuan untuk mempermudah pengambilan keputusan berbasis data mengenai kegiatan ekstrakurikuler yang sesuai dengan minat dan bakat siswa. Metodologi penelitian ini melibatkan pengumpulan data melalui observasi dan wawancara, serta penerapan metode MOORA untuk mengolah data mengenai minat, bakat, kreativitas, dan potensi keterlibatan siswa dalam kegiatan ekstrakurikuler. Hasil penelitian menunjukkan bahwa penerapan metode MOORA dapat menghasilkan peringkat yang objektif dan sistematis terhadap kegiatan ekstrakurikuler yang tersedia, berdasarkan kriteria yang ditetapkan. Kegiatan Pramuka, dengan nilai tertinggi (Yi = 0,4821), dinilai sebagai kegiatan yang paling sesuai dengan profil minat dan bakat siswa, diikuti oleh Kesenian dan Paskibra. Metode MOORA terbukti efektif dalam memberikan rekomendasi kegiatan ekstrakurikuler yang lebih tepat dan efisien, mengatasi masalah pemilihan yang sebelumnya bersifat subjektif dan ad-hoc. Penelitian ini menyimpulkan bahwa penerapan MOORA dapat meningkatkan kualitas keputusan dalam pemilihan kegiatan ekstrakurikuler, yang berpotensi memperkaya pengalaman dan pengembangan keterampilan siswa. Kata kunci: MOORA; Rekomendasi ekstrakurikuler; Pengambilan keputusan; Sistem pendukung keputusan; Pendidikan.