Claim Missing Document
Check
Articles

Found 1 Documents
Search

Naive Bayes dan Decision Tree: Studi Kasus Klasifikasi Kepuasan Pelanggan E-Commerce Tulak Bamba, Ofirmince; Nur Vadila; Sri Fitrawati; Tedang, Vilna Wati; Asrawati
Jurnal Sistem Informasi dan Sistem Komputer Vol 10 No 2 (2025): Vol 10 No 2 - 2025
Publisher : STIMIK Bina Bangsa Kendari

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51717/simkom.v10i2.897

Abstract

Peningkatan belanja daring mendorong e-commerce untuk memahami kepuasan pelanggan melalui analisis ulasan otomatis. Studi ini mengevaluasi dan membandingkan kemampuan algoritma Naive Bayes dan Decision Tree dalam mengklasifikasikan tingkat kepuasan berdasarkan 5.000 ulasan dari platform Olist. Ulasan dikategorikan ke dalam tiga kelas, yaitu Tidak Puas, Netral, dan Puas. Pra-pemrosesan meliputi pembersihan data, ekstraksi fitur dengan TF-IDF, dan pembagian data 80% latih dan 20% uji. Evaluasi menggunakan metrik accuracy, precision, recall, F1-score, dan AUC. Naive Bayes menunjukkan akurasi lebih tinggi (80,70%) dibanding Decision Tree (73,90%) serta performa klasifikasi yang lebih stabil. Dengan demikian, Naive Bayes lebih efisien untuk klasifikasi kepuasan pelanggan berbasis teks pada ulasan e-commerce.