Open-ended concept maps generated by students give better flexibility and present a complex analysis process for teachers. We investigate the application of classification algorithms in assessing openended concept maps, with the purpose of providing assistance for teachers in evaluating student comprehension. The method used in this study is experimental methods, which consists of data collection, preprocessing, representation generation, and modelling with Feedforward Neural Network, Random Forest, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree, and Logistic Regression. Our dataset, derived from concept maps, consists of 3,759 words forming 690 propositions, scored carefully by experts to ensure high accuracy in the evaluation process. Results of this study indicate that K-NN outperformed all other models, achieving the highest accuracy and Receiver Operating Characteristic-Area Under the Curve scores, demonstrating its robustness in distinguishing between classes. Support Vector Machine excelled in precision, effectively minimizing false positives, while Random Forest showcased a balanced performance through its ensemble learning approach. Decision Tree and Linear Regression showed limitations in handling complex data patterns. FeedforwardNeural Network can model intricate relationships, but needs further optimization. This research concluded that Artificial Intelligence classification enables a better assessment for teachers, enables the path for personalized learning strategies in learning.