Claim Missing Document
Check
Articles

Found 2 Documents
Search

Performance of Auto Glass Powder-High Calcium Fly Ash Geopolymer Mortar Exposed to High Temperature Zaetang, Yuwadee; Wongkvanklom, Athika; Pangdaeng, Saengsuree; Hanjitsuwan, Sakonwan; Wongsa, Ampol; Sata, Vanchai; Chindaprasirt, Prinya
Civil Engineering Journal Vol. 11 No. 6 (2025): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2025-011-06-010

Abstract

Waste glass enhances concrete sustainability by reducing virgin material use and recycling waste. In traditional concrete, it boosts strength through pozzolanic reactions, while in geopolymer concrete, it improves durability, insulation, and resistance to harsh conditions. This study investigated the viability of substituting auto glass powder (AGP) for high-calcium fly ash (FA) in geopolymer mortar formulations. AGP was utilized as a substitute for high-calcium FA at substitution levels ranging from 0% to 40% by weight. The study examined the physical properties, compressive strength, thermal insulation, and high-temperature performance of the geopolymer composites. The findings indicated that a higher AGP content corresponded with a reduced mortar flow, while increasing the proportion of AGP resulted in the diminished compressive strength of the geopolymer composites. Incorporating 10–20% AGP into the geopolymer mortar gave satisfactory compressive strengths (75–85%) compared to the reference mortar. Thermal conductivity testing indicated that AGP enhanced the thermal insulating properties of mortar. Notably, the compressive strength, after being exposed to 600–900°C, improved with the inclusion of the AGP. Based on XRD, the combeite crystalline phase was present in the mortars containing 20% and 40% AGP after being subjected to 900ºC. This phase contributed to the durability and stability of the material. Thus, it was confirmed that AGP not only served as a beneficial additive but also could play a crucial role in the thermal resilience of geopolymer systems.
Bio-Based Modification of Natural Rubber-Modified Asphalt Using Hard Resin from Yang Sinthorn, Poramin; Tirapat, Supakorn; Katekaew, Somporn; Wongsa, Ampol; Posi, Patcharapol; Thongchom, Chanachai; Chindaprasirt, Prinya
Civil Engineering Journal Vol. 11 No. 11 (2025): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2025-011-11-018

Abstract

This study investigates the potential of hard resin derived from the Yang tree (HY), a renewable bio-based byproduct, as a performance-enhancing additive in natural rubber-modified asphalt (NRMA). HY-modified binders (HYMA) containing 3%, 7%, and 15% HY by weight were evaluated through a multi-scale experimental program, including physical, rheological, thermal, chemical, and mechanical tests. Standard binder characterizations (penetration, ductility, softening point, viscosity), spectroscopic analyses (FT-IR, NMR), microstructural observations (ESEM, XRD), thermal profiling (DSC), and performance assessments (DSR, Marshall) were conducted. The results demonstrated that HY improved binder properties at optimal concentration by introducing additional hydrocarbon structures without chemical cross-linking. HYMA3 achieved the most favorable balance of stiffness, flexibility, and compaction efficiency, whereas higher HY contents (≥7%) impaired structural integrity and deformation resistance. Microstructural and thermal evidence confirmed surface modifications and altered thermal transitions, which influenced viscoelastic response. These findings provide new insights into bio-resin–asphalt interactions and establish the viability of HY as a sustainable alternative to synthetic polymer modifiers. Beyond performance improvement, HY promotes circular construction by transforming agricultural byproducts into functional pavement materials, supporting the development of climate-adaptive infrastructure.