Claim Missing Document
Check
Articles

Found 3 Documents
Search

Hybrid Deep Learning Untuk Prediksi Kunjungan Tamu Hotel Satrani, Azral; Krismono, Bambang; Hidjah, Khasnur
Jurnal Sistem Informasi dan Teknologi Vol 5 No 2 (2025): Jurnal Sistem Informasi dan Teknologi (SINTEK)
Publisher : LPPM STMIK KUWERA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56995/sintek.v5i2.173

Abstract

Prediksi jumlah kunjungan tamu hotel adalah aspek penting dalam pengelolaan operasional dan perencanaan strategis, terutama pasca pandemi Covid-19 yang menyebabkan fluktuasi tinggi dalam kunjungan. Holiday Resort Lombok, resort bintang empat di Senggigi, mencatat pertumbuhan kunjungan 35,20% dari 2022 hingga 2023, menunjukkan pemulihan pariwisata. Penelitian ini mengembangkan model prediksi menggunakan hybrid deep learning yang mengintegrasikan Convolutional Neural Network (CNN) untuk mengekstraksi pola spasial dan Long Short-Term Memory (LSTM) untuk menangani aspek temporal. Dataset terdiri dari 730 catatan harian kunjungan dari Januari 2022 hingga Desember 2023, dengan pelatihan model pada variasi epoch (50, 100, 150, dan 200). Hasil terbaik diperoleh pada 150 epoch, dengan Root Mean Sequare Error (RMSE) 29,55 untuk data pelatihan dan 32,23 untuk data pengujian, menunjukkan akurasi yang lebih baik dibandingkan metode tradisional. Namun, model menunjukkan potensi overfitting, memerlukan optimalisasi lebih lanjut. Model ini dapat mendukung pengambilan keputusan terkait alokasi sumber daya dan strategi pemasaran. Penelitian selanjutnya disarankan untuk mengeksplorasi ensemble learning dan integrasi variabel eksternal untuk meningkatkan ketepatan model.
Hybrid Deep Learning Untuk Prediksi Kunjungan Tamu Hotel Satrani, Azral; Krismono, Bambang; Hidjah, Khasnur
Jurnal Sistem Informasi dan Teknologi Vol 5 No 2 (2025): Jurnal Sistem Informasi dan Teknologi (SINTEK)
Publisher : LPPM STMIK KUWERA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56995/sintek.v5i2.173

Abstract

Prediksi jumlah kunjungan tamu hotel adalah aspek penting dalam pengelolaan operasional dan perencanaan strategis, terutama pasca pandemi Covid-19 yang menyebabkan fluktuasi tinggi dalam kunjungan. Holiday Resort Lombok, resort bintang empat di Senggigi, mencatat pertumbuhan kunjungan 35,20% dari 2022 hingga 2023, menunjukkan pemulihan pariwisata. Penelitian ini mengembangkan model prediksi menggunakan hybrid deep learning yang mengintegrasikan Convolutional Neural Network (CNN) untuk mengekstraksi pola spasial dan Long Short-Term Memory (LSTM) untuk menangani aspek temporal. Dataset terdiri dari 730 catatan harian kunjungan dari Januari 2022 hingga Desember 2023, dengan pelatihan model pada variasi epoch (50, 100, 150, dan 200). Hasil terbaik diperoleh pada 150 epoch, dengan Root Mean Sequare Error (RMSE) 29,55 untuk data pelatihan dan 32,23 untuk data pengujian, menunjukkan akurasi yang lebih baik dibandingkan metode tradisional. Namun, model menunjukkan potensi overfitting, memerlukan optimalisasi lebih lanjut. Model ini dapat mendukung pengambilan keputusan terkait alokasi sumber daya dan strategi pemasaran. Penelitian selanjutnya disarankan untuk mengeksplorasi ensemble learning dan integrasi variabel eksternal untuk meningkatkan ketepatan model.
Klasifikasi Ulasan Pengguna Tiket Pesawat Online dengan Penanganan Ketidakseimbangan Data Menggunakan SMOTE dengan Machine Learning Husaini, Rahayun; Amrullah Husaini, Rahayun; Pratama, Gede Yogi; Satrani, Azral
Jurnal Tata Kelola dan Kerangka Kerja Teknologi Informasi Vol. 11 No. 3 (2025): Desember 2025
Publisher : Universitas Komputer Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34010/jtk3ti.v11i3.18906

Abstract

The COVID-19 pandemic affected public habits in air travel and increased the use of online ticket booking platforms. This study aimed to analyze sentiment in online flight ticket purchase reviews using the Support Vector Machine and K-Nearest Neighbor methods. The research was conducted by collecting user review data from the Tiket.com website, followed by preprocessing, term weighting using TF-IDF, and classification using both methods. The results show that the Support Vector Machine method achieves an accuracy of 51 percent, while the K-Nearest Neighbor method reaches 55 percent after applying data balancing techniques. This study concludes that both methods are effective in classifying user sentiment and can assist service providers in improving service quality and understanding customer needs