Dila Aura Futri
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Klasifikasi Sentimen Analisis terhadap Cryptocurrency Exchange Menggunakan Naive Bayes untuk Mendukung Keputusan Investor Pemula Dila Aura Futri; Verdi Eza Irawan; Feby Alfaraby; Moh Azral Fathurrazaq; Fikri Maulana; Somantri; Gina Purnama Insany
Prosiding Seminar Nasional Teknologi Informasi, Mekatronika, dan Ilmu Komputer Vol 3 (2024): Sentimeter 2024
Publisher : Prosiding Seminar Nasional Teknologi Informasi, Mekatronika, dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Investasi dalam cryptocurrency semakin menarik perhatian di tengah perkembangan teknologi finansial dan globalisasi. Cryptocurrency Exchange atau Bursa Pasar Mata Uang Kripto merupakan platform penting bagi para investor dalam melakukan transaksi jual beli aset kripto. Bagi investor pemula, pemahaman sentimen pasar dapat menjadi kunci untuk pengambilan keputusan yang tepat. Penelitian ini bertujuan memberikan rekomendasi kepada investor pemula dalam memilih platform Exchange Cryptocurrency, seperti Binance, KuCoin, Tokocrypto, dan Indodax, melalui analisis sentimen ulasan pengguna di Play Store. Metode penelitian mencakup enam tahap, termasuk pengumpulan data, preprocessing teks, pembobotan, pemodelan Naïve Bayes, dan evaluasi model. Hasil penelitian menunjukkan bahwa Binance memiliki sentimen positif tertinggi dengan nilai precision sebesar 0.99 dan akurasi 95%. Temuan ini dapat menjadi panduan bagi calon pengguna dalam memilih platform Exchange Cryptocurrency dan memberikan masukan bagi pengembang untuk meningkatkan kualitas aplikasi. Kesimpulannya, pemodelan sentimen analisis menggunakan Naïve Bayes memberikan hasil yang baik, dengan akurasi rata-rata lebih dari 93%.
The Implementasi Model Vision Transfomers Pada Klasifikasi Jenis Kulit Wajah Berbasis Website Dila Aura Futri; Ivana Lucia Kharisma; Somantri
Computer Science and Information Technology Vol 6 No 2 (2025): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v6i2.10026

Abstract

Skin type misidentification often leads to inappropriate skincare product selection, which can negatively affect skin health. This study aims to develop a web-based automatic facial skin type classification system using the Vision Transformer (ViT) architecture. The model implemented is ViT Base Patch 16, pre-trained on the ImageNet dataset and fine-tuned using 10,000 facial images evenly distributed across four classes: normal, dry, oily, and combination. The dataset underwent augmentation and normalization during preprocessing. The training results showed an accuracy of 78% on the test data, with the best performance in the combination skin class (F1-score of 0.86) and the lowest in the normal skin class (F1-score of 0.72). The model was integrated into a Flask-based system that enables users to classify their skin type by either uploading an image or capturing it via camera. System testing was conducted using functional testing and API testing via Postman. The results demonstrated that all key features of the system functioned properly, and the API successfully returned classification responses in JSON format. This system can assist users in identifying their skin type and serve as a reference for selecting appropriate skincare ingredients.