Claim Missing Document
Check
Articles

Found 2 Documents
Search

Impact of Tropical Environmental Conditions on Mechanical Cooling Tower Performance: A Case Study at PT. XYZ Prasetyo, Eko Andi; Rhakasywi, Damora; Fahrudin, Fahrudin
Journal of Ocean, Mechanical and Aerospace -science and engineering- Vol 69 No 2 (2025): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse)
Publisher : International Society of Ocean, Mechanical and Aerospace -scientists and engineers- (ISOMAse)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36842/jomase.v69i2.540

Abstract

Indonesia's tropical climate, characterized by high ambient temperatures, intense humidity, and frequent rainfall, presents significant challenges for industrial cooling systems. This research investigates how tropical climate conditions influence the operational performance of a mechanical cooling tower installed at PT. XYZ, located in Cileungsi, West Java, Indonesia. The research offers valuable insights into energy optimization and operational planning under varying weather scenarios. Data collection involved real-time measurements under nine combinations of weather and time conditions (sunny, cloudy, rainy; morning, noon, afternoon), using thermocouples, hygrometers, and an ESP32 microcontroller. Key variables observed include ambient temperature, incoming water temperature, outgoing water temperature, relative humidity, and wet bulb temperature. Multiple linear regression was employed for analysis, supported by correlation analysis, t-tests, and F-tests. The model achieved a high determination coefficient (R²) of 80%, indicating strong predictive accuracy. Partial R² analysis revealed that the outgoing water temperature contributed 77% to the variation in cooling tower efficiency, followed by ambient temperature at 65%, incoming water temperature at 54%, and relative humidity at 36%. The highest efficiency, 67%, was recorded during sunny mornings, while the lowest, 42%, occurred at rainy noon. These findings confirm that tropical environmental factors have a significant and quantifiable impact on cooling tower performance. The results are expected to support the development of adaptive and efficient energy strategies in tropical industrial contexts.
Study of hydrodynamic characteristics in oscillating wave surge converter julian, james; Anggara, Rizki Aldi; Naufal, Ridwan Daris; Ramadhani, Rifqi; Prasetyo, Eko Andi; Wahyuni, Fitri; Gunasti, Nabilah Dwi
Jurnal Polimesin Vol 22, No 2 (2024): April
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jpl.v22i2.4715

Abstract

In the realm of renewable energy, researchers worldwide have been paying close attention to developing the Oscillating Wave Surge Converter (OWSC) device. This device has the potential to harness the power of ocean waves and convert it into a reliable source of clean energy. Hydrodynamic characteristics are essential parameters in developing OWSC devices. Therefore, this research conducted a hydrodynamic study on the OWSC device with variations in ocean wave periods, including T= 1.5, 1.7, 1.9, 2.1, and 2.3. The Boundary Element Method (BEM) describes the interaction between sea waves and floating body structures. This method assumes incompressible, inviscid, and irrotational flow. A numerical approach is used as a calculation method followed by verification and validation to support the level of actualization. The research results showed that the incident wave caused the OWSC device to experience a deviation from its equilibrium position in the form of an oscillating flap inclination angle as a form of hydrodynamic characteristics. The sea wave period correlatedwith the rate of change in flap position over time, including the maximum deviation in the flap angle. As a power plant, the performance of the OWSC device can work at reasonably short-wave period intervals based on the device's ability to produce mechanical power. The highest average mechanical power was achieved in the T= 1.5 period of 34.49 Watts with an efficiency of up to 52.43%. The OWSC device requires a high intensity of wave energy in a short duration to generate optimal mechanical power. It is important to note that optimal mechanical power generation is crucial for the OWSC device to function effectively. Therefore, the device should be placed in a location where the wave energy intensity is consistently high.