Claim Missing Document
Check
Articles

Found 2 Documents
Search

Microwave-assisted extraction of eco-friendly surfactant from Jatropha curcas for sustainable solubilization of reactive dyes Aryanti, Nita; Khoiriyah, Lu'luatul; Nafiunisa, Aininu; Ratnawati; Widiasa, I Nyoman; Zakki, Abdurrahman; Adina, Alifia Rizki
Communications in Science and Technology Vol 10 No 1 (2025)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.10.1.2025.1636

Abstract

Natural surfactants derived from plant-based sources, such as saponins, remain underexplored. This study developed the extraction of saponins from Jatropha curcas leaves using microwave-assisted extraction (MAE) finding that the optimized condition of 3 min, 363.15 K, 30 mL/g ratio of extraction yielded the highest saponin content of 35.04 mg/g. The FTIR and HPLC analyses confirmed the structural similarity between the extract and commercial saponin. Additionally, the extracted saponins effectively solubilized Remazol Red RB and Blue TQ with solubilization efficiency increasing proportionally to the surfactant concentration. The surfactant properties of the extracted saponin were also confirmed by its ability to form foam and high critical micellar concentration, which revealed the potential for material valorization. This work demonstrated that the development of plant-based surfactants provides a sustainable alternative to synthetic surfactants. Moreover, valorizing natural materials contributes to the advancement of eco-friendly technologies, particularly in waste treatment and water purification applications.
Composite Encapsulating Agent for NaFeEDTA Microencapsulation Using Spray Drying Method Handayani, Noer Abyor; Aryanti, Nita; Haryani, Kristinah; Hargono, Hargono; Adina, Alifia Rizki; Yuliani, Sari; Adristy, Vania Zulfa
Reaktor Volume 25 No.2 August 2025
Publisher : Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/reaktor.25.2.%p

Abstract

Iron microencapsulation is one of the solutions to protect iron from reacting with other substances that result in quality declines of fortified food products. The coating materials used should be appropriate for the specified encapsulation process. This study combined glucomannan and maltodextrin as coating materials and added HPMC as an additive to encapsulate NaFeEDTA. The results showed that such a combination could increase the encapsulation efficiency. The morphologies of the resulting microcapsules obtained from four formulations applied in this study were identical; numerous wrinkles appear on the particle’s surfaces due to the presence of HPMC. All formulations had a narrow size distribution with an average particle size between 105 and 111 µm, thermal resistance up to a temperature of ± 200°C, and the same functional groups but with different intensities. The NaFeEDTA included in all formulations had a bioavailability value of 2.3 - 2.9%. The best formulation, based on the gastrointestinal digestion simulation, was shown by the formulation with a glucomannan:maltodextrin ratio of 2:3 (in 1% w/v coating material) with a release percentage of 64.28% in SGF solution and an increase of 2.27% in SIF solution. To prevent anemia, ± 400 mg of iron microcapsules resulting from the best formulation in this study are required to meet 75% of the daily intake.