This Author published in this journals
All Journal bit-Tech
Prinafsika
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Cloud-Based High Availability Architecture Using Least Connection Load Balancer and Integrated Alert System Prinafsika; Junaidi, Achmad; Muharrom Al Haromainy, Muhammad
bit-Tech Vol. 8 No. 1 (2025): bit-Tech
Publisher : Komunitas Dosen Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32877/bt.v8i1.2520

Abstract

Ensuring optimal service continuity remains a critical challenge in cloud computing, especially when dealing with high traffic loads and system failure potential that can cause losses. To address this, this research presents the implementation of a high availability (HA) cloud system using the Least Connection load balancing algorithm implemented with Nginx, integrated with early anomaly detection and alert mechanisms. The HA architecture is implemented across two geographically distributed cloud service providers, Alibaba Cloud and Google Cloud, to analyze latency and performance differences under high load conditions. The system's resilience and scalability were evaluated through load testing using K6, simulating workloads ranging from 100 to 1000 Virtual Users (VUs) for single server configurations and 200 to 2000 VUs for HA configurations. The experiment results showed a significant improvement in service availability, reaching 100% uptime with the HA configuration compared to a peak of 98.79% in the single server environment. The Least Connection strategy effectively balanced traffic by monitoring active connections, resulting in a 29.73% increase in processed requests and a 42% reduction in system load at 1000 VUs. Additionally, the alert system successfully sent real-time Telegram notifications for delays or failures, enabling proactive mitigation. These results confirm that combining dynamic load balancing with proactive alerts can significantly improve service reliability, resource efficiency, and resilience to failures in distributed cloud infrastructure providing a viable model for robust and scalable cloud service architectures.