Claim Missing Document
Check
Articles

Found 2 Documents
Search

Penerapan Naive Bayes, Chi-Square dan SMOTE pada Opini Masyarakat Terhadap Fufufafa di YouTube Andreyas; Tandoballa, Lucky; Wijaya, Novan
Journal Information & Computer Vol. 3 No. 2 (2025): Journal Information & Computer
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/jicomisc.v3i2.50304

Abstract

Penelitian ini bertujuan untuk menganalisis opini masyarakat terhadap komentar terkait akun kaskus fufufafa pada platform YouTube dengan menggunakan metode Naive Bayes, Chi-square, dan SMOTE. Dalam penelitian ini meliputi beberapa metode tahapan utama: mining dataset, pelabelan dataset, preprocessing, dan penerapan metode SMOTE untuk mengatasi ketidakseimbangan pada kelas. Penambangan data dilakukan dengan cara mengumpulkan data komentar pengguna dari video YouTube terkait pembahasan akun kaskus fufufafa. Kemudian dilakukan langkah pelabelan untuk mengklasifikasikan komentar menjadi sentimen positif, negatif, atau netral. Tahap preprocessing meliputi pembersihan data dari unsur-unsur yang tidak diperlukan seperti tanda baca, angka, dan karakter khusus. Untuk mengatasi masalah ketidakseimbangan pada kelas, Kami kemudian menerapkan Synthetic Minority Oversampling Technique (SMOTE) dimana jumlah komentar dengan sentimen tertentu lebih sedikit dibandingkan jumlah komentar yang lain. Hasil penelitian ini menunjukkan bahwa akurasi model Naive Bayes mencapai 60,5%, sedangkan penggunaan seleksi fitur chi-square dengan SMOTE meningkatkan akurasi menjadi 68,3%. Dalam hal ini menunjukkan bahwa penggunaan chi-square dengan SMOTE dapat meningkatkan akurasi prediksi sentimen sebesar 7,8%. Kesimpulan dari penelitian ini adalah model Naive Bayes dengan pemilihan fitur chi-square dengan SMOTE lebih efektif dalam memprediksi opini masyarakat dibandingkan model Naive Bayes tanpa pemilihan fitur tersebut.
Color and Texture Feature Extraction for Disease Identification in Chili Leaves Using K-Nearest Neighbors Andreyas; Alamsyah, Derry
INOVTEK Polbeng - Seri Informatika Vol. 11 No. 1 (2026): February
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/s9v7mn76

Abstract

Manual identification of chili leaf diseases has the weakness of subjectivity, which impacts the decline in harvest productivity. This study aims to build an accurate automatic classification system using a machine learning approach. The research methodology integrates the extraction of Hue, Saturation, Value (HSV) color features and Gray Level Co-occurrence Matrix (GLCM) texture on a dataset of 1,856 images divided with a ratio of 80:20. Hyperparameter optimization was performed using Grid Search on the K-Nearest Neighbors (K-NN) algorithm to find the best performance. The test results show that the optimal configuration is achieved at a value of K = 3 with the Manhattan distance metric, which produces a test accuracy of 92%. It is concluded that the integration of color and texture features with appropriate parameter optimization is proven to be effective as a reliable and efficient diagnostic solution.