Claim Missing Document
Check
Articles

Found 3 Documents
Search

THE IMPACT OF BANK-SPECIFIC FACTORS ON NON-PERFORMING LOAN IN INDONESIA: EVIDENCE FROM ARDL MODEL APPROACH Sinay, Lexy Janzen; Latupeirissa, Sanlly J; Pelu, Shelma M; Tilukay, Meilin I
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 16 No 2 (2022): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (529.601 KB) | DOI: 10.30598/barekengvol16iss2pp675-686

Abstract

Non-performing Loan (NPL) is an indicator that is generally used to determine the ability of bank management to manage non-performing loans. This study aims to analyze the impact of bank-specific factors on NPL. The bank-specific factors are Capital Adequacy Ratio (CAR), Return on Assets (ROA), Operating Expenses on Operating Income (BOPO), and Loan to Deposit Ratio (LDR). The data used is monthly time series data, a case study on Commercial Banks in Indonesia from January 2015 to August 2020. The model used to analyze these problems is Autoregressive Distributed Lag (ARDL). The results obtained are ARDL(1,6,0,1,1) model is the best model. The model shows that bank-specific factors have a direct impact on NPL. Specifically, the ARDL bounds test offers the analysis results, which show that the ability of bank-specific factors to explain the NPL of commercial banks in Indonesia is 84%. At the same time, 16% are other factors outside the model. The analysis results show a long-run cointegration relationship between NPL and specific characteristics, CAR, ROA, and BOPO. Then, only CAR, BOPO, and LDR impact NPL in the short-run relationship. The equilibrium correction obtained is significant and confirms a long-run relationship. The equilibrium correction indicates a high velocity towards stability after a shock. It means that the performance of Commercial Banks in Indonesia is outstanding during the COVID-19 Pandemic because the ability to recover from shock is relatively faster
Pelatihan Pembuatan Website Personal Untuk Guru SMA Negeri 2 Seram Bagian Barat Sebagai Pendukung Learning Management System Balami, Abdul Malik; Wattimanela, Henry J; Van Delsen, Marlon S. Noya; Djami, Ronald J; Latupeirissa, Sanlly J; Hiariey, Arlene H; Loklomin, Samsul B
PENGAMATAN: Jurnal Pengabdian Masyarakat untuk Ilmu MIPA dan Terapannya Vol 2 No 1 (2024): PENGAMATAN: Jurnal Pengabdian Masyarakat untuk Ilmu MIPA dan Terapannya
Publisher : Jurusan Matematika FMIPA Universitas Pattimura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/pengamatanv2i1p24-29

Abstract

Pengaamatan : Perkembangan media pembelajaran telah merevolusi kebiasaan guru dalam menyajikan pembelajaran, yang tadinya hanya menggunkan metode ceramah dan membaca buku, sekarang berganti dengan berbagai aplikasi yang mudah dan fleksibel untuk digunakan. Pelatihan ini bertujuan untuk memberikan pengetahuan dan keterampilan kepada para guru dalam menciptakan lingkungan belajar interaktif yang efektif dan menarik dengan menggunakan website Guru yang mengikuti pelatihan ini diharapkan memiliki kemampuan merancang dan menyiapkan konten pembelajaran interaktif yang sesuai dengan kebutuhan peserta didik dan kemampuan untuk mengintegrasikan berbagai elemen interaktif seperti gambar, video, dan tautan eksternal ke dalam proses pembelajaran. media yang mereka buat. Pelatihan ini dilakukan melalui kombinasi metode penyajian materi, pelatihan langsung dan penyelidikan langsung. Jurusan Matematika Fakultas MIPA Universitas Pattimura berinisiatif untuk melakukan pelatihan kepada guru-guru SMA Negeri 2 Seram Bagian Barat tentang pembuatan website personal sebagai pendukung Learning Management Sysytem dengan menggunakan Google Site
Classification of Poverty in Maluku Province using SMOTE-Random Forest Algorithm Damamain, Ferina L; Sinay, Lexy Janzen; Latupeirissa, Sanlly J; Bakarbessy, Lusye
Pattimura International Journal of Mathematics (PIJMath) Vol 4 No 1 (2025): Pattimura International Journal of Mathematics (PIJMath)
Publisher : Pattimura University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/pijmathvol4iss1pp17-28

Abstract

Poverty is a complex issue. According to BPS publications, in 2023, the poverty line in Indonesia has reached 9.57%. Maluku is one of the provinces with a high poverty rate, reaching 16.23%. This research aims to classify poverty status in Maluku Province using the SMOTE-random forest algorithm. This research uses SUSENAS 2022 data, where the data is not balanced. SMOTE is used to overcome this problem. The best model obtained has an accuracy rate of 85.8%. The model is based on a training data proportion of 75% and testing 25%, with parameters m=4 and r=100. The critical factor that influences poverty status in Maluku Province is the number of households.