Claim Missing Document
Check
Articles

Found 1 Documents
Search

THE COMPARISON OF ARIMA AND RNN FOR FORECASTING GOLD FUTURES CLOSING PRICES Pratiwi, Windy Ayu; Rizki, Anwar Fajar; Notodiputro, Khairil Anwar; Angraini, Yenni; Mualifah, Laily Nissa Atul
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 1 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss1pp397-406

Abstract

In the financial markets, accurately forecasting the closing prices of gold futures is crucial for investors and analysts. Traditional methods like ARIMA (Autoregressive Integrated Moving Average) have been widely used for this purpose, particularly for their effectiveness in short-term stable data forecasting. However, the inherent complexity and dynamic nature of financial data, coupled with trends and seasonal patterns, present significant challenges for long-term forecasting with ARIMA. Conversely, advanced methods such as Recurrent Neural Networks (RNN) have shown promise in handling these complexities and providing reliable long-term forecasts. This research seeks to evaluate and compare the performance of ARIMA and RNN in forecasting daily gold futures closing prices using forecast accuracy tests namely RMSE and MAPE, aiming to identify the optimal method that balances accuracy, stability, and adaptability to trends and seasonal variations in the financial market. The daily data for this analysis is sourced from Investing.com (https://www.investing.com).