Juniawan, Rycci
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Perbandingan Tingkat Akurasi Pengenalan Cacat Kayu Berdasarkan Tingkat Pencahayaan Dengan Metode JST Juniawan, Rycci; Gasim, Gasim
Algoritme Jurnal Mahasiswa Teknik Informatika Vol 2 No 1 (2021): Oktober 2021 || Algoritme Jurnal Mahasiswa Teknik Informatika
Publisher : Program Studi Teknik Informatika Universitas Multi Data Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (473.748 KB) | DOI: 10.35957/algoritme.v2i1.1452

Abstract

Kayu adalah bagian batang / cabang / ranting tumbuhan yang mengeras akibat proseslignifikasi atau pengayuan secara alami. Kayu terbentuk akibat akumulasi selulosa dan ligninpada bagian dinding sel berbagai jaringan pada batang pohon. Cacat kayu di alam inimerupakan akibat serangan dari luar pohon selama masa pertumbuhannya. Penelitihan iniadalah bagaimana melakukan perbandingan tingkat akurasi pengenalan cacat kayu. Penelitihanmenggunkan dataset cacat kayu yaitu 80 data uji dan 80 data latih. Dataset yang diambil laludiekstraksi menggunakan GLCM untuk dilatih menggunakan JST. Pelatihan JST dilakukandengan mencari semua kemungkinan hidden layer. Setelah mendapatkan hidden layer kemudianakan dibandingkan dengan setiap hidden layer untuk melihat hasil pengenalan paling baik.Perbedaan terlihat secara jelas adalah akurasi menggunakan pencahayaan 3 lampumemdapatkan akurasi paling tinggi. Dengan melihat persentase dari perhitungan jumlah datayang dikenali dengan jumlah data yang diuji tiap layer pada seriap pencahayaan. Berdasarkanhasil yang didapat, pencahayaan 3 lampu dengan jaringan syaraf tiruan dapat menghasilkantingkat akurasi yang paling tinggi yaitu sebesar 98%.