Claim Missing Document
Check
Articles

Found 2 Documents
Search

The impact of fast charging technology on battery longevity in electric vehicles Nagabushanam, Perattur; Chenchireddy, Kalagotla; Dora, Radhika; Babu, Thanikanti Sudhakar; Jagan, Vadthya; Manohar, Varikuppala
International Journal of Advances in Applied Sciences Vol 14, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijaas.v14.i3.pp936-944

Abstract

Fast charging technology has revolutionized the electric vehicle (EV) industry by addressing range anxiety and significantly reducing charging times. However, this convenience introduces challenges concerning battery longevity, as high charging currents and elevated temperatures accelerate battery degradation. This paper investigates the mechanisms through which fast charging impacts lithium-ion batteries, including thermal stress, lithium plating, and mechanical wear. It synthesizes findings from various studies, highlighting how fast charging can shorten battery lifespan by up to 20-30% compared to standard charging methods. Strategies to mitigate these effects, such as advanced materials, adaptive charging protocols, and efficient thermal management systems, are discussed. Furthermore, the paper emphasizes the importance of standards and policies to promote sustainable fast charging practices. By balancing charging speed with long-term battery health, the EV industry can achieve widespread adoption while ensuring sustainability. This work aims to provide a comprehensive understanding of the trade-offs associated with fast charging and offers actionable insights for improving EV battery durability.
Navigating the future of energy storage: insights into lithium-ion battery technologies Chenchireddy, Kalagotla; Nagabushanam, Perattur; Dora, Radhika; Jagan, Vadthya; Sydu, Shabbier Ahmed; Manohar, Varikuppala
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i3.pp1429-1437

Abstract

Lithium-ion batteries are now considered essential technology for a wide range of contemporary applications due to the growing need for effective and sustainable energy storage solutions. The various lithium-ion battery chemicals that are covered in detail in this paper are lithium iron phosphate (LFP), lithium nickel manganese cobalt (NMC), lithium nickel cobalt aluminum oxide (NCA), lithium-ion manganese oxide (LMO), lithium-ion cobalt oxide (LCO), and lithium titanate oxide (LTO). Based on critical performance metrics such as energy density, life cycle, charge/discharge rates, cost, and operational temperature range, each kind is assessed. Additionally, the paper discusses the future potential of lithium-ion technologies, with a focus on advancements in energy density, safety, sustainability, and recycling. By assessing the strengths and limitations of various lithium-ion chemicals, this paper seeks to provide valuable insights into the rapidly evolving field of battery technology, highlighting their indispensable role in the transition to sustainable energy systems. Lithium ion batteries have the potential to significantly enhance the efficiency and dependability of energy storage systems in a variety of applications with further research and development.