Claim Missing Document
Check
Articles

Found 2 Documents
Search

PENGUJIAN KEBOCORAN LEAD APRON MENGGUNAKAN DIGITAL RADIOGRAPHY DI INSTALASI RADIOLOGI RSUD dr SOEHADI PRIJONEGORO SRAGEN Sri Andriani Savitri H. Pakaya; Fisnandya Meita Astari; Muhammad Fakhrurreza
Journal of Innovation Research and Knowledge Vol. 5 No. 4: September 2025
Publisher : Bajang Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Latar Belakang: Lead Apron merupakan salah satu alat pelindung diri berbahan timbal yang dirancang untuk melindungi tubuh dari bahaya radiasi. Untuk memastikan lead apron dapat memberikan perlindungan yang optimal, maka perlu dilakukan pengujian lead apron secara berkala yaitu 12-18 bulan sekali atau saat dibutuhkan. Di Instalasi Radiologi RSUD dr. Soehadi Prijonegoro Sragen, pengujian terakhir dilakukan pada tahun 2022 sehingga menimbulkan kekhawatiran akan adanya kerusakan namun lead apron tersebut masih tetap digunakan. Penelitian ini bertujuan untuk mengetahui prosedur pengujian, hasil pengujian lead apron di Instalasi Radiologi RSUD dr Soehadi Prijonegoro Sragen.Metode: Pengumpulan data pada penelitian ini dilakukan dengan melakukan pengujian lead apron untuk mengetahui adanya lekukan, lipatan, retakan, sobekan atau ruang. Pengumpulan data dilakukan pada bulan Oktober 2024-April 2025. Hasil penyinaran diolah menggunakan computed radiography (CR) untuk mengukur tingkat kerusakan pada lead apron kemudian dibandingkan dengan teori Lambert 2001. Hasil: Prosedur uji kebocoran apron timbal dilakukan dengan metode radiografi dengan cara meregangkan apron timbal di atas meja pemeriksaan dan membagi apron timbal menjadi empat kuadran serta memaparkan masing-masing kuadran apron yang telah diberi lapisan. Hasil pengujian ketiga apron timbal tidak mengalami kebocoran, hanya menunjukkan adanya gelombang atau lekukan dan lipatan pada apron timbal sehingga masih aman dan layak digunakan sebagai peralatan proteksi radiasi. Kesimpulan: Pengujian ketiga apron timbal dilakukan dengan metode radiografi, untuk hasil pengujian tidak terjadi kebocoran atau masih dalam kondisi baik dan masih layak pakai. Namun demikian, pengujian apron timbal di Instalasi Radiologi RSUD Dr. Soehadi Prijonegoro Sragen masih perlu ditingkatkan untuk frekuensi pengujian pada masing-masing apron timbal. Dimana rentang pengujian dilakukan secara rutin setiap 12-18 bulan sekali untuk memantau kondisi apron timbal.
ANALISIS PERBANDINGAN SNR DAN CNR PADA CITRA DIGITAL RADIOGRAPHY KEPALA NON KONTRASMENGUNAKAN METODE PENGOLAHAN CITRA PHYTON Kalpin, Kalpin; Anshor Nugroho; Muhammad Fakhrurreza
Journal of Innovation Research and Knowledge Vol. 5 No. 4: September 2025
Publisher : Bajang Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Background: This study compares SNR and CNR in non-contrast head X-rays using Python. Head image quality is crucial due to its complex anatomical structure and the importance of small details in determining a diagnosis. Python is used to objectively analyze image clarity, read medical data, calculate SNR and CNR values, and display the results visually. This research is expected to help physicians obtain clearer images, accelerate diagnoses, and improve the quality of radiology services. Methods: This research was conducted at the Radiology Laboratory of Aisyiyah University Yogyakarta from March to May 2025. The subjects used were not live patients, but rather cranium phantoms, which are artificial models of human heads typically used for training or research to ensure safety. In this study, three different X- ray settings were used: 70 kV 10 mAs, 75 kV 12 mAs, and 80 kV 15 mAs. Each setting produced head X-rays with varying levels of brightness and sharpness. The images were saved in a medical-specific format called DICOM. Next, the images were analyzed using the Python programming language through the Google Colab platform. This analysis was carried out to calculate two important things: SNR (Signal-to-Noise Ratio), which describes how clear the image signal is compared to interference or "noise," and CNR (Contrast-to-Noise Ratio), which indicates how easy it is to distinguish two tissues or parts in the image. This calculation was carried out both before and after the image was improved through the image enhancement process. In this way, researchers can assess whether image processing actually makes head X-rays clearer and more useful for medical diagnosis. Results: The results showed that after image processing with Python, the SNR values increased in some settings, resulting in cleaner images, but the CNR values decreased in all images. This means that although the images appear sharper and clearer visually, the ability to distinguish anatomical structures is reduced. Therefore, improving visual quality through image enhancement does not always translate into improved diagnostic quality, requiring caution when applying it to radiology. Conclusion: The conclusion of this study is that processing non-contrast head radiographic images using Python can improve the SNR value in several parameter variations, so that the image appears cleaner from noise interference. However, the CNR value tends to decrease in all variations, which means the ability to distinguish anatomical structures is reduced. This shows that increasing visual acuity of the image is not always directly proportional to improving diagnostic quality, so image enhancement techniques need to be applied carefully to maintain a balance between image clarity and clarity of anatomical details to support medical diagnosis