Hypertension is one of the most prevalent non-communicable diseases and a major risk factor for heart disease, stroke, and kidney disorders. The high prevalence of hypertension cases in the community, particularly in the working area of Puskesmas Kota Rantau Prapat, highlights the urgent need for more effective early detection efforts to prevent severe complications in the future. However, the limited capacity of healthcare workers in utilizing data analysis technologies has resulted in hypertension risk detection being dominated by conventional methods, which are often less accurate and inefficient. To address this issue, this community service program was conducted through training on the application of the Random Forest algorithm to analyze patients’ medical history data in order to detect hypertension risks. The training method included an introduction to the fundamentals of machine learning, data pre-processing stages, implementation of the Random Forest algorithm, and interpretation of prediction results. The outcomes of the program demonstrated that healthcare workers were able to understand the use of data analysis technologies to support more accurate early detection of hypertension. Furthermore, the participants gained practical skills in utilizing medical datasets to produce predictions that can serve as a decision-support tool for preventive medical actions.Thus, this training contributed to enhancing the capacity of community healthcare workers in integrating machine learning-based technologies into preventive healthcare services. This program is expected to serve as an initial step toward developing more effective, efficient, and sustainable data-driven health systems.